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ABSTRACT

Automated time series anomaly detection methods can provide insights while reducing
the load placed on human experts in a variety of settings. Machine-generated signals, such as
those produced by sensors, often contains control signals in addition to the target observation
signal. These signals may provide additional insight about the normal vs. abnormal proper-
ties of the observation signal. Despite this fact, even recent anomaly detection methods using
deep learning give limited consideration to the relationship between observation and control
signals, often failing to handle the control signal at all. This work proposes pre-processing,
modeling, and evaluation methods for multivariate, heterogeneous time series to examine
how using information from the control signal can improve anomaly detection. We develop
a deep learning reconstruction-based pipeline and test its performance on the NASA Soil
Moisture Active Passive (SMAP) satellite and the Mars Science Laboratory (MSL) Rover,
which contains heterogeneous sensing data from exploratory missions. The pipeline follows
the Sintel machine learning framework and is accessible through the Meissa library, which
builds on the capabilities of the open-source library Orion for end-to-end unsupervised time
series anomaly detection pipelines.
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Chapter 1

Introduction

Time series anomaly detection (AD) methods can be applied to problems ranging from

identifying fraudulent activity or exceptional events in financial data to detecting faults in

industrial workloads. In the latter case where anomalies may indicate device malfunction or

human error, AD methods also help anticipate and prevent imminent failures.

One can imagine the data from such settings growing rapidly in volume and complexity

beyond what a human can feasibly analyze, especially if the signal contains multiple channels

that each must be monitored. Automated AD methods – in particular deep-learning methods

– have grown in popularity due to their ability to take in large amounts of training data at

once while extracting the underlying features of the time series.

A particular setting that the thesis considers is when features of multivariate signals are

related; this is the case with control signals, which we define as signals resulting from

intentionally programmed intervention such as human operation of a switch. The value of a

control signal signifies a state of the device that may correlate with or directly affect other

signals. We provide an example from the Soil Moisture Active Passive (SMAP) dataset used

for this thesis in Figure 1.1. The first plot shows the continuous observation channel with

the expert-labeled anomalous region highlighted in yellow, while the second and third plots

show the values of 2 control signal channels.
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If we only looked at the observation channel, we might be tempted to think that the

middle segment starting just before 2011 could also be an anomalous interval due to an

abrupt change in the values range. However, looking at the control signal channels can give

us more information: channel 3 shows the density of positive values increasing with the rising

pattern of the time series until right after the start of the anomalous segment. Here, the state

of the control signal is correlated with the relative magnitude of the observation signal for all

of the non-anomalous region, but becomes flat at the end. Channel 4, on the other hand, is

sparse but the location of its positive values is particularly telling, as they correspond to the

start and end of the middle segment where the range of signal values become compressed.

This might indicate that channel (4) in particular becomes equal to 1 upon a state change.

As such, being able to model a signal using all of its channels can help provide additional

insight into the AD process.

2009 2010 2011 2012 2013 2014 2015 2016
1

0

1
Observation channel (0) of signal E-3 with ground-truth anomalies

2009 2010 2011 2012 2013 2014 2015 2016
0.0

0.5

1.0
Control channel (3) of signal E-3

2009 2010 2011 2012 2013 2014 2015 2016
0.0

0.5

1.0
Control channel (4) of signal E-3

Figure 1.1: Plot of control and observation channels of signal ‘E-3’ from the SMAP dataset.
The yellow highlighted region indicates a known anomaly.

Previous work on deep learning models for AD such as [1] train and test their models on

14



univariate signals even if the original input signal contains multiple channels, as is the case

of the NASA datasets used in this thesis. Part of this reason is because popular benchmark

datasets such as the Yahoo S5 dataset1 and the Numenta Anomaly Benchmark [2] are uni-

variate. Although control signals are not typically assumed to be anomalous (i.e. no anomaly

detection is performed on them), they can provide additional insights into the patterns and

latent state of the target signal. For instance, if the control signal mediates a particular

property of the observation signal(s) (e.g. the amplitude), one can model the inter-channel

correlation to more accurately detect abnormal segments. Furthermore, the state of the

control signal can also indicate which segments should not be considered anomalous at all if

otherwise abnormal changes in the observed signal’s values are directly tied to a change in

the control signal’s state.

Deep anomaly detection methods also differ in how much they rely on ground-truth labels

to identify anomalies and can be classified as supervised, unsupervised, or semi-supervised

[3]. Supervised approaches use labeled anomalies during the training process, typically by

having the model directly classify whether a point is anomalous and using the label to score.

In unsupervised anomaly detection, no labeled anomalies are required; rather, the model aims

to learn the "normal" features of the data during training and anomalies are identified by

looking for points or intervals where the observed data deviates significantly from the model

output. Semi-supervised approaches aim for the model to accurately learn the patterns of

the data through providing an incomplete subset of labeled samples [4]. For instance, a

semi-supervised approach could involve training on only normal instances and testing on

both normal and anomalous cases. Such an approach can be desirable in applications such

as fault detection, where labeled anomalies are harder to obtain.

Unsupervised and semi-supervised methods tend to be more practical since the nature

of anomalies is that they are rare occurrences and thus depending on the task, a well-

labeled dataset may not exist at all. There have been both successful prediction-based and
1https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70
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reconstruction-based unsupervised pipelines for multivariate signals in recent years such as

the ones in [5] [6], but few can capture multiple patterns that may be the result of changing

states in other channels of the data. This could be in part due to (a) not explicitly accounting

for different characteristics between control and observed signals, or (b) not capturing the

relationship between the signal’s channels.

1.1 Contributions

This thesis presents a framework for modeling control signals in AD using reconstruction-

based methods and evaluates an example LSTM auto-encoder pipeline called MixedLSTM

developed within the framework. The goal of improving anomaly detection is two-fold:

• First, we aim to improve the reconstruction accuracy by incorporating control signals;

• Second, we aim to more finely filter candidates for anomalies using the state of the

control signal, reducing the incidence of false positives/negatives.

The pipeline and its model, pre-processing, and post-processing primitives are accessible

through a user-friendly interface in the Meissa library, which extends the existing function-

ality of the Orion2 AD library.

1.2 Thesis Organization

The work is organized as follows: Chapter 2 provides background on time series anomaly

detection and related work and describes Orion and the Sintel[7] ecosystem in greater detail.

Chapter 3 outlines the methodology for developing the MixedLSTM pipeline and the relevant

primitives, while Chapter 4 describes how the objects and functionality can be accessed

through Meissa. Chapter 5 provides background on the benchmark data used and compares

the performance between naively handling control signals in Orion vs. explicitly handling
2https://github.com/sintel-dev/Orion
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them in Meissa in terms of both model architecture and evaluation. Lastly, Chapter 6

examines these results and proposes future directions.
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Chapter 2

Sintel Background

2.1 Time series

Time series data presents a unique framework for analysis, characterized by its sequential

arrangement of data points indexed by time. Central to its structure is the concept of

temporal dependency, wherein each observation’s value is influenced by its preceding ones.

This inherent time ordering underscores the significance of understanding the data’s histor-

ical context. Furthermore, time series often display discernible trends, indicating long-term

shifts in values, and seasonality, manifesting as cyclical patterns at regular intervals. These

trends and seasonal fluctuations encapsulate crucial insights into underlying phenomena, ne-

cessitating specialized methodologies for their detection and interpretation. However, such

observable patterns and behaviors can also evolve over time; this non-stationary property

poses a unique challenge for modeling time series compared to other sequential data such as

text.

In addition to temporal dependency and non-stationarity, time series data is also subject

to inherent noise, obscuring meaningful patterns amidst random fluctuations. The challenge

lies in disentangling signal from noise, a task complicated further by irregular events or

anomalies, which typically represent significant departures from the data’s expected behav-
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ior. Converting the time series into a stationary form facilitates more robust analysis and

modeling. Achieving stationarity may require preprocessing steps such as de-trending or

differencing, as well as domain expertise [8].

The following sections outline how anomalies are defined and detected, and how the

anomaly detection task is set up as an end-to-end pipeline in Orion and Meissa. A more

precise description of how the data is represented and transformed is also provided in Section

2.3.

2.1.1 Anomalies

Generally, we can consider an anomaly as an observation or pattern in data that signifi-

cantly deviates from the expected or normal behavior, indicating potential errors, outliers,

or noteworthy events. Anomalies can represent beneficial or harmful occurrences depending

on the context, but we typically want to be made aware of them so that we can handle them

separately. For instance, major events such as holidays can lead to spikes in sales, but such

data intervals should be excluded when predicting sales over a “normal” week or month.

Anomalies can be broadly categorized as point or contextual , each requiring different

detection approaches and interpretations:

• Point anomalies refer to data points that deviate significantly from the overall pattern

of the time series. These anomalies stand out as extreme values compared to the

rest of the data and can often be detected using statistical measures such as standard

deviation, z-scores, or percentile thresholds. Point anomalies are characterized by their

isolated nature, occurring independently of the surrounding context or neighboring

data points. For example, a sudden spike or dip in stock prices amidst relatively stable

trading activity would be considered a point anomaly.

• Contextual anomalies, or collective anomalies if they occur throughout the data, refer

to when a time segment is considered anomalous in a specific temporal context, but not

20



otherwise [2]. Unlike point anomalies, contextual anomalies may not be global extreme

values. Detecting contextual anomalies is typically a more difficult task as it requires

analyzing subtle temporal patterns, spatial correlations, or multivariate interactions.

2.2 Anomaly detection

What makes detecting anomalies a difficult task? As mentioned in Section 2.1, the mixture of

anomalies arising from noise and anomalies arising from phenomena can make it hard to dis-

tinguish random outliers from meaningful ones. Furthermore, anomalies occur infrequently

by nature, and the scarcity of labeled anomalous data further compounds the difficulty of de-

tection and generalization especially in supervised settings. Despite the inherent challenges,

many successful approaches have emerged over the years.

2.2.1 Early anomaly detection methods

Early anomaly detection methods encompass a variety of techniques developed prior to the

widespread adoption of deep learning approaches. These methods often rely on statistical or

nearest-neighbor/clustering algorithms [9][10] to identify deviations from expected patterns

in time series data. One such method is statistical thresholding, where anomalies are de-

tected based on predefined thresholds applied to statistical measures such as mean, standard

deviation, or percentiles. Another common approach is using regression models to decompose

the time series into trend, seasonality, and residual components and identifying anomalies in

the latter; this was done in the Autoregressive Moving Average (ARMA) approach outlined

by [11]. Autoregressive Integrated Moving Average (ARIMA) [12] attempts to estimate such

residuals while accounting for non-stationarity. Such methods reflect the intuition that we

often think of anomalies as outliers in a dataset. Indeed, rule-based methods try to de-

fine what an outlier is in the time series in terms of various features (rather than just the

standard deviation of the point). These methods have the benefit of being simpler and less

21



computationally expensive, but their detection ability is often limited to point anomalies.

2.2.2 Deep-learning methods

Deep-learning AD methods can be broadly categorized into two kinds: prediction-based

and reconstruction-based. As discussed in Chapter 1, they also vary from supervised, to

semi-supervised, to unsupervised. Here we focus on highlighting unsupervised, reconstruction-

based AD methods since they are most relevant to the thesis.

Prediction-based methods

Prediction-based methods typically train a model to forecast future values in the time series

over sliding windows and evaluate performance based on some defined deviation from the

values that were actually observed [13]. The Long Short-Term Memory Network with Dy-

namic Thresholding (LSTM-DT) used in Hundman et al’s work [1] is a popular architecture

for prediction-based AD. The paper trained and evaluated their model on the same telemetry

data used in this thesis, the Mars Science Laboratory (MSL)1 and the Soil Moisture Active

Passive (SMAP)2 dataset. Other popular methods include Hierarchical Temporal Memory

and Bayesian Networks [14].

While prediction-based methods are useful for efficiently learning feature representation

at specified timestamps, they have their limitations. For instance, LSTM-DT methods can

be prone to false positives with high anomaly scores at early indices due to the smoothing

process. On the other hand, they are prone to false negatives when it comes to contex-

tual anomalies in intervals with a simple pattern and/or a small amplitude, as noted in the

analysis from Wong et al [15].
1https://pds.nasa.gov/ds-view/pds/viewDataset.jsp?dsid=MSL-M-REMS-2-EDR-V1.0
2https://smap.jpl.nasa.gov/data/
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Reconstruction-based methods

In reconstruction-based methods, a deep learning model such as a recurrent neural network

(RNN) is trained to learn patterns in the provided signal and, when prompted, construct

another signal. The discrepancy between the model-constructed signal and actual signal

is used to identify anomalies. The intuition is that the latent representation of the signal

created by the model during learning captures the core patterns of the time series; these

core features will remain when it is recovered from the latent representation during decoding

while the anomalous features would be missing.

Several reconstruction-based variants of LSTM models exist including LSTM Auto-

Encoders (LSTM-AE) [16] and LSTM Variational Auto-Encoders (LSTM-VAE) [17], which

learn latent space representations using an auto-encoder with LSTM layers. Such models

require carefully incorporating regularization during optimization to prevent overfitting to

noise and anomalous segments.

Another popular architecture for reconstruction-based AD are Generative Adversarial

Networks (GANs), which consists of using generators to map between the input and latent

data domain and critics to discriminate between the real and generated time-series during

training. Geiger et al. [18] developed a time-series anomaly detection GAN (Tad-GAN)

architecture with a framework to estimate anomaly scores that outperformed baseline meth-

ods such as LSTM, ARIMA, HTM, and LSTM-AE. Experiments such as those from [15]

show that reconstruction-based methods are better at capturing a global distribution across

the time series but underperform against some prediction-based models when it comes to

point anomalies.

Hybrid methods

Some recent anomaly detection frameworks have combined prediction- and reconstruction-

based methods to complement each method’s strengths and weaknesses.

Wong et al.’s Auto-encoder with Regression (AER) model combines an auto-encoder with
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an LSTM regressor and trains on a joint reconstruction- and prediction-based loss. With just

a vanilla auto-encoder, AER outperformed ARIMA, TadGAN, and LSTM variants across

several time series AD datasets, including SMAP [15].

MTAD-GAT, a graph-based model, feeds the output of parallel graph attention (GAT)

layers and a Gated Recurrent Unit (GRU) into both a prediction-based model and reconstruction-

based model and optimizes their combined loss [6].

The relative success of such architectures above motivate further exploration which may

include experimenting with the relative contributions within the joint loss, and incorporating

human feedback into the loop.

2.2.3 Related work with control signals

A number of previous studies worked with multivariate signals as sensing is a popular ap-

plication of AD, and datasets such as SMAP and MSL are widely used for benchmarking.

A more relevant example is the work of Hsieh et al [16], who use an auto-encoder model

for reconstruction-based AD for a sequence of sensors in a production line. All the sen-

sor signals are binary, indicating where in the chamber the sensor is moving through. To

train the auto-encoder, the authors opted for optimizing the pooled mean squared error loss

across sensors. While the model outperformed methods such as Vector Auto-Regression and

k-Nearest Neighbors, the study did not compare its performance to other state-of-the-art

models and differed in setting due to only working with binary signals rather than a hetero-

geneous mix. Furthermore, while the format of the signals is similar to the control signals

in the SMAP/MSL dataset, their meanings differ: the signals in the former indicates state

while those in the latter potentially modulate state.
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2.3 Formalizing an anomaly detection pipeline

We have seen the wide variety of approaches to anomaly detection, as well as the range of

settings AD is deployed. In most cases, the data cannot be modeled in its raw form and

must go through several pre-processing steps before it is ready for modeling and scoring. As

such, it can be more apt to describe anomaly detection as a sequential workflow composed of

independent pre-processing, modeling, and post-processing modules as opposed to a single

transformation [19]. This is the key idea behind Orion3, Meissa, and other libraries within

Sintel[7], which enables users to construct end-to-end pipelines for time series tasks such as

AD. Below we provide a more precise definition of the AD task and an overview of available

primitives in Orion/Meissa.

2.3.1 Sintel

The methods for control signals in this thesis are built and tested within the Sintel4 ecosys-

tem. Sintel is a machine learning framework for end-to-end time series tasks. At the core

of the framework is the concept of primitives and pipelines. Such a concept originated

from the Machine Learning Blocks (MLBlocks) framework proposed by Collazo and Xue [20]

[21], who wanted to create a unified API for accessing data science software tools which

have otherwise been distributed across several libraries depending on the type of data being

analyzed and the step of the data science process – for example, pandas5 supports a variety

of operations for pre-processing and visualization, but not modeling. On the other hand,

the scikit-learn6 and xgboost7 libraries provide modeling options but lack a comprehen-

sive suite of pre-processing functions. Such specialization of libraries is not undesirable, but

drawing from various libraries throughout the data science process can be confusing and
3https://github.com/sintel-dev/Orion
4https://sintel.dev/
5https://pandas.pydata.org/docs/index.html
6https://scikit-learn.org/stable/
7https://xgboost.readthedocs.io/en/stable/
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primitive fit method produce method

keras.Sequential.LSTMTimeSeriesRegressor fit predict
sklearn.preprocessing.StandardScaler fit transform
statsmodels.tsa.arima.model.ARIMA — predict

Table 2.1: Examples of primitives and their corresponding fit and produce methods as an
MLBLocks object.

time-consuming for users due to differences in interfaces. Collazo shows that every data

problem can be mapped into the MLBlocks representation, from generative modeling tech-

niques such as Hidden Markov Models to clustering. The MLBlocks framework later became

accessible as an open-source library through the work of Smith et al. [19] and has since

provided a foundation for a variety of data science tools including the time series libraries

in Sintel.

At a high level, an MLBlock object acts as an engine for a primitive function or class

such that users can run the primitive, tune parameters, and access metadata through the

same set of methods. The functionality of each primitive is defined through its fit and

produce methods; these are the methods that the user calls when running the block on a

piece of data. For example, the primitive sklearn.preprocessing.StandardScaler which

is a class from scikit-learn would set fit as the primitive’s fit method and transform as

the produce method. If a primitive does not have a relevant fit method, not specifying it

would produce no operations (a no-op). An example list of primitives and their corresponding

fit/produce methods can found in Table 2.1, and more details can be found in the MLBlocks

documentation8.

Many libraries in Sintel have primitives ready-to-use for a variety of time series tasks.

ml-stars9 is a library containing general purpose primitives for processing time series. Orion

and Meissa have their own primitives that act as modular building blocks encapsulating

essential functionalities for anomaly detection tasks. These operations span across all steps
8https://mlbazaar.github.io/MLBlocks/index.html
9https://pypi.org/project/ml-stars/
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Pipeline Citation
AER [15]
ARIMA [12]
Azure [22]
Dense auto-encoder/LSTM auto-encoder [23]
GANF [24]
LNN [25]
LSTM Dynamic Thresholding [1]
Matrix Profile [26]
TadGAN [18]
VAE [17]

Table 2.2: List of Orion pipelines and relevant citations

of the anomaly detection process, including data transformation during the pre-processing

phase, training and prediction during the modeling phase, and error calculation during the

post-processing phase.

Users can compose primitives into a pipeline tailored to their specific anomaly detection

task, orchestrating the flow of data through a series of interconnected operations. A pipeline

is simply a sequence of primitives (or blocks) strung together to provide a single interface for

executing a sequence of operations. Calling methods such as fit and detect on the pipeline

iteratively performs the operations through each step of the pipeline such that the output

of the first block is fed in as the input of the second block, and so on.

Besides making tasks such as anomaly detection an accessible as an end-to-end pipeline,

Sintel also provides a framework for benchmarking pipelines and for customizing workflows

through its API and annotation function. Several anomaly detection pipelines using state-of-

the-art models are readily accessible via the Orion library, allowing users to test the pipeline

on their own data in both supervised and unsupervised settings; see Table 2.2. Further

information can be found in Chapter 4 and [7].

While the methods outlined in this thesis are in the Meissa library, they build on the

existing functionality of Orion and follow the same framework of primitives and pipelines

outlined by Sintel. The goal of Meissa is to offer specialized support for working with both
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Variable Definition

x input time series
x̂ reconstructed time series
yt model prediction at time t
A anomaly intervals
t timestamp
n number of timestamp observations in signal
d number of channels in signal

nobs number of observation signal channels
k aggregation interval
s rolling window step size
wr rolling window sequence size
we reconstruction error window size
T reconstruction error threshold

Table 2.3: Notation table for variables in Chapter 2

multivariate and heterogeneous signals while allowing users to continue accessing the Orion

modules. For the purposes of this thesis, we define a signal as heterogeneous if it contains a

mix of observation and control signals, and we define a signal as multivariate if it contains

more than one channel.

2.3.2 Data Representation

Here we more precisely define the inputs and outputs of the AD pipeline. Table 2.3 provides

a summary.

Signal

Let us define the input to the anomaly detection pipeline as a multivariate time series

x := [x0, x1, . . . , xn] with xt ∈ Rd, where n is the number of observations and d is the

number of channels. If the signal is heterogeneous (containing both observation and control

signals), we can specify the first nobs channels as observation signals taking on a continuous

range of values, and the remaining d − nobs channels as binary control signals taking on

values in {0, 1}. For the dataset tested on in this thesis, nobs = 1 while the number of control
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signals is 25 − nobs = 24 for SMAP and 55 − nobs = 54 for MSL. In reality, it is possible

to have several channels to perform anomaly detection on; for example, the Server Machine

Dataset contains multi-channel sensing data from 28 machines in a large Internet company

measuring CPU load, network usage, and memory usage [27].

Sintel’s data processing and ML pipelines such as Orion expect data in the form of a

2-dimensional pandas10 DataFrame object where rows denote observations at a certain time

step and columns denote signal channels. Additionally, the data should contain a timestamp

column to indicate the order of the observations. Figure 2.1 shows an example multivariate

signal from the MSL dataset loaded using Orion’s load_signal method. In this case (and

in the case of all signals from SMAP/MSL), the first channel after timestamp is observation

while the remaining 54 channels are control.

Figure 2.1: Example multivariate signal ‘M-2’ from the MSL Dataset loaded with Orion’s
load_signal utility function. The first signal column obs_0 is the observational channel,
while the remaining are control.

Anomalies

We follow the definition of an anomaly detection pipeline provided by [7]. That is, a pipeline

takes in a signal x as described above and outputs an array of intervals

A = [(t1s, t
1
e), (t

2
s, t

2
e), . . . , (t

l
s, t

l
s)]

where ts, te are respectively the start and end timestamps of the anomalous interval. Each

anomaly can also include a score to indicate the severity of the anomaly, e.g. Orion’s
10https://pandas.pydata.org/
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channel start end severity

0 0 1274421600 1278439200 0.767445
1 0 1280016000 1284163200 0.749520
2 0 1294228800 1319673600 1.125687
3 1 1270512000 1271678400 3.396181
4 2 1270512000 1271678400 3.396181

start end

0 1294488000 1319112000

Table 2.4: Example representation of detected anomalies (left) vs. ground-truth anomalies
(right) from the test set of signal ‘M-2’ from the MSL dataset.

find_anomalies function computes the severity as the magnitude of the error relative to

surrounding errors. Note that the input signal can be univariate as is often the case; this is

just a special case of x ∈ Rn×d where the number of channels d is equal to 1.

In the multivariate case, anomalies may be computed for each observation channel and

further filtered or aggregated. If the signal contains both observation and control signals,

the magnitude of the errors in the control signal can also be used to inform the severity of

the anomaly, the confidence in whether an interval is an anomaly, or both; more on this in

Chapters 4 and 5. Figure 2.4 shows an example output of detected anomalies on the example

data used in Figure 2.1 from the Meissa MixedLSTM pipeline.

2.3.3 Pre-processing

Before time series data can undergo analysis or be used as input in a deep learning model,

several pre-processing steps need to happen:

• Aggregation: Often performed to adjust the temporal resolution of the data, this

step involves grouping the raw time series data into larger time intervals, such as hours,

days, or weeks, by computing summary statistics like mean, median, or sum within

each interval. Aggregation can make unevenly sampled data evenly spaced and in

general it can reduce data complexity and noise while preserving important temporal

patterns. Specifically, given an aggregation interval of k timesteps and aggregation

function f : Rk×d → R1×d, we convert a time series x0, x1, . . . , xn into the aggregated
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version

f(x0:k−1), f(xk:2k−1), . . . , f(xn−k−1:n)

where xs:e := [xs, xs+1, . . . , xe].

• Scaling: Scaling is applied to normalize the values of the time series features since

most models are sensitive to the magnitude of the input values. Common techniques

include min-max scaling, where values are scaled to a range such as [0, 1] or [−1, 1],

and standardization (Z-score normalization), where values are scaled to have a mean

of 0 and a standard deviation of 1.

• Imputation: If the time series contains missing values, which can arise due to various

reasons such as sensor failures or data collection issues, imputation can be applied.

Techniques range from interpolation with a parameters like the mean to model impu-

tation.

• Window sequences: Finally, we create window sequences from the data to make it

suitable for training models. This involves sliding a fixed-size window over the time

series data and extracting sequences of data points as inputs, along with corresponding

target values. For instance, a rolling window of size wr time steps and a step size of 1

would create n− wr sub-sequences where

xi = {xi, xi+1, . . . , xi+wr−1}

for i = 0, 1, . . . , n − wr, the first observation in the given window [15]. For step sizes

s > 1, the window would shift such that i = 0, s, 2s, . . . . The rolling window sequences

for the model input vs. the target differs depending on the anomaly detection setting.

In prediction-based AD, the target window would be shifted forward by some number

of time steps so the model to learn to predict future values, whereas the target window

sequences would equal the input window sequences in reconstruction-based AD. More
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detail about different AD approaches is covered in section 2.2.

2.3.4 Modeling

The exact input and output of the model depends on the signal dimensions, the model archi-

tecture, and the particular AD approach (e.g. prediction vs. reconstruction), as highlighted

in Section 2.2.2. In general, a single input to the model is a window sequence of wr obser-

vations xi. In Orion and Meissa, wr = 100 for reconstruction-based models wr = 250 for

prediction-based models. For this thesis, we expect the model to output a corresponding

sequence of the same number of timesteps. That is, given input xi = {xi, xi+1, . . . , xi+wr−1},

the model outputs a one-step forecast yi+1 in prediction-based AD and an expected sub-

sequence x̂i = {x̂i, x̂i+1, . . . , x̂i+wr−1} in reconstruction-based AD.

The number of channels output by the model depends on what channels are set as the

target channel. In many cases, only one target channel is specified, regardless of the number

of channels in the input. That is, each x̂/yi+1 can be anywhere between 1 and d channels.

We start off Chapter 3 by running a many-to-one version of two LSTM-based pipelines on

the SMAP and MSL datasets. However, the proposed pipeline in Meissa reconstructs the

entire output to allow for additional analysis of the control signal channels.

2.3.5 Post-processing

Given the model’s predicted or reconstructed sequences, we need to convert the expected

signal – that is, what was expected by the model – into anomalous intervals. This is accom-

plished through post-processing methods, which can be broadly decomposed into aggrega-

tion, error computation, and anomaly scoring:

• Aggregation: Since the rolling window sequence inputs overlap with each other, there

will be multiple outputs for a given time step of the signal in the reconstruction case.

To convert these overlapping output sequences into a single time series of the original
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input dimensions, we can aggregate the predictions at each time step by applying a

function such as the mean or median and using that as the representative value of the

time step. By default, we take the median.

• Error computation: Given the expected output of the model and the observed time

series, we want to compute the discrepancy between the two. In prediction cases, we can

simply take the absolute error between each forward prediction and the corresponding

original point in the time series:

error =
n∑

i=wr+1

|x̂i − xi|

where errors are computed starting from time step wr + 1 since that is the index

of the first forward prediction. In the reconstruction case, a variety of methods can

be employed since entire sub-sequences are reconstructed by the model. In addition

to the absolute error, common approaches include area differencing, where for each

subsequence i = 0, . . . , n− w we compute the total difference in that region

error =
1

2l

∣∣∣∣∫ i+1

i=1

x̂i − xidt

∣∣∣∣
where 2l is the length of the curve calculated using the trapezoidal rule. Yet another

popular metric is the dynamic time warping (DTW) distance [28] which finds the op-

timal many-to-many mapping between the expected and actual output that minimizes

the Euclidean distance between aligned series under all possible alignments:

error = min
π∈A

 ∑
(i,j)∈π

d(xi, x̂j)
q

 1
q

where π is an alignment path consisting of index pairs (i, j) outlining a possible way

to map points in x to points in x̂, and d is a distance metric with power q (squared
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error in the case of pyts.metrics.dtw.

Figure 2.2: Diagram comparing Euclidean distance to DTW distance from Romain Tavenard
https://rtavenar.github.io/blog/dtw.html

• Anomaly scoring: Given an array of errors, we wish to compute a threshold over

which errors over the threshold are candidate anomalies. A threshold T is computed

over each window of we errors, where the window size can be varied as a parameter.

In our case, we opt for a fixed threshold that is computed from taking the value z

standard deviations above the mean error. After finding the points where the error is

above T , the anomalies are pruned to reduce the incidence of false positives. In Orion’s

find_anomalies primitive, this is done by computing the percentage increase between

an error and the next highest error and removing the ones that are below a minimum

threshold, which can also be set by the user.
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Chapter 3

Incorporating control signals in anomaly

detection

This chapter outlines the steps taken to construct an anomaly detection framework for

handling control signals by looking at changes to consider at the pre-processing, modeling,

and post-processing stages. It also describes the dataset and benchmarking process used,

both of which are accessible through Orion.

3.1 Datasets

The pipeline is evaluated on real telemetry data derived from NASA’s Incident Surprise

Anomaly reports. Specifically, the project works with data from the Mars Science Laboratory

(MSL) rover and the Soil Moisture Active Passive (SMAP) satellite. In both datasets,

commands to and from various device modules at each timestep are encoded as binary

control signals for a given channel. Analysis of such signals will be incorporated into the

anomaly detection pipeline. Processing information in such reports is crucial for engineers

to understand causes of unexpected events during the mission and better anticipate future

failures.

In both the SMAP and MSL dataset, the signals consist of one observation channel
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with continuous values ranging from −1 to 1, with the rest being binary control signals

in {0, 1}. The number of channels is 25 and 55 for SMAP and MSL, respectively. The

observations in each signal are all equally spaced into 6-hour intervals. Thus, despite the

fact that time_segments_aggregate, MinMaxScaler, and SimpleImputer are part of the

the LSTM pipelines, no aggregation, scaling, or imputation was needed for this data.

3.2 Naive approach

To start, we looked at how well the LSTM Dynamic Threshold (LSTM-DT) and LSTM

Auto-encoder (LSTM-AE) pipelines in Orion handle multivariate signals naively. By de-

fault (and in the Orion benchmark), the pipelines fit and predict on the univariate versions

of the SMAP/MSL dataset, which contains only a timestamp column and the continuous

observation signal column. If we pass in the multivariate version of the signals as input, all

columns undergo the pre-processing steps with the same parameters and are used to train

the model, but the model output is only the observation column.

The LSTM Dynamic Threshold pipeline consists of the following primitives:

1 "primitives": [

2 "mlstars.custom.timeseries_preprocessing.time_segments_aggregate",

3 "sklearn.impute.SimpleImputer",

4 "sklearn.preprocessing.MinMaxScaler",

5 "mlstars.custom.timeseries_preprocessing.rolling_window_sequences",

6 "keras.Sequential.LSTMTimeSeriesRegressor",

7 "orion.primitives.timeseries_errors.regression_errors",

8 "orion.primitives.timeseries_anomalies.find_anomalies"

9 ],

where LSTMTimeSeriesRegressor consists of two hidden layers with 80 LSTM units each

and dense layer that outputs a single vector of predicted values at each input timestep.

At first glance, the LSTM Auto-encoder pipeline seems to have mostly the same steps:

1 "primitives": [
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2 "mlstars.custom.timeseries_preprocessing.time_segments_aggregate",

3 "sklearn.impute.SimpleImputer",

4 "sklearn.preprocessing.MinMaxScaler",

5 "mlstars.custom.timeseries_preprocessing.rolling_window_sequences",

6 "orion.primitives.timeseries_preprocessing.slice_array_by_dims",

7 "keras.Sequential.LSTMSeq2Seq",

8 "orion.primitives.timeseries_errors.reconstruction_errors",

9 "orion.primitives.timeseries_anomalies.find_anomalies"

10 ],

but the approaches of the pipelines differ in several ways. First, as expected, the model

primitive is an auto-encoder with LSTM units as opposed to the double stacked recurrent

neural network architecture in LSTM-DT. This reflects the fact that LSTM Auto-encoder

(LSTM-AE) is a reconstruction-based pipeline that first encodes the input data into a feature

vector in the latent space through the first LSTM layer before decoding it through another

LSTM layer. Like LSTMTimeSeriesRegressor, the final dense pooling layer condenses the

hidden state into expected time series values for only the first column. The output of the

auto-encoder is the what the model expects the time series to look like based on the latent

features it extracted. On the other hand, LSTMTimeSeriesRegressor is trained to predict

some number of timesteps ahead of the input window sequence.

The second major difference is in the error function used. LSTM-AE uses the dynamic

time warping (DTW) distance between the reconstructed and original values over a pre-

defined window of points. LSTM-DT computes the absolute errors between predicted and

original points and applies Exponential Weighted Moving Average (EWMA) smoothing.

3.3 Explicitly handling control signals

In this section, we outline the methodology used to develop a new LSTM auto-encoder-

based pipeline (MixedLSTM) in Meissa that handles multivariate and heterogeneous signals
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explicitly. We namely describe the high level properties and differences from the LSTM-AE

pipeline in Orion. Figure 3.1 shows the stages of the pipeline and the flow of data through

pre-processing, modeling, and post-processing primitives.
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Figure 3.1: MixedLSTM pipeline diagram

3.3.1 Pre-processing

Given that control signals are discrete and binary in our setting, we modify a few of the

pre-processing steps to account for this and describe some below. The notation used follows

from Chapter 2; an overview of variable definitions can be found in Tables 2.3 and 3.1.

• Aggregation: The default aggregation method in Orion is to take the mean of the
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Variable Definition

xi input window sequence starting at index i
x̂i reconstructed window sequence starting at index i
xo,i observation subset of input window sequence
x̂o,i observation subset of reconstructed window sequence
xc,i control subset of input window sequence
x̂c,i control subset of reconstructed window sequence
b batch size
p output class probability
λ loss ratio
α positive class weight parameter
γ focusing parameter

Table 3.1: Notation table for variables in Chapter 3

values in the aggregation interval. This works well for continuous signals, but taking the

mean or median can lead to a non-integer value between 0 and 1 for control signals.

Thus, the maximum, minimum, or mode would be more appropriate depending on

how the data is distributed. In our case, we choose to use max as our aggregation

function: f(xt:t+k) = max(xt:t+k), 0 ≤ t ≤ n − k, where n is the signal length and

k is the aggregation window size. This is motivated by the face that values of 1 are

sparse in the control signal channels and thus are more likely to encode important

information. Indeed, less than 2% of control signal values in SMAP and less than 1%

of control signal values in the MSL dataset are positive (see Table 3.2). In general, the

aggregation method just be chosen according to the properties of the dataset, which

often require interpretation by domain-knowledge experts.

• Imputation: Similar to aggregation, we choose to only impute values of 0 or 1 for

control signals. Taking the maximum, minimum, or mode would all fulfill this property;

in our case, we choose to set the mode as the default value to impute. This is due to

the face that values of 1 are statistically rare. Thus, imputing 0 in an interval with

only 0s (no significant events) best represents the information given by that interval.

• Scaling: For pipelines handling heterogeneous signals in Meissa, we assume that the
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Avg Length Avg Sparsity (%)
SMAP 10485 ±1604 1.24 ±0.90
MSL 4891 ±2035 0.53 ±0.35

Table 3.2: Summary statistics of the SMAP and MSL dataset. Sparsity is the percentage of
control signal values that are equal to one.

control signals have already been processed to take on only values of 0 or 1. Thus,

we opt to not include any scaling of the control signal channels in the pipeline. In-

stead, only the observation channels specified by the num_obs parameter is scaled to

be between [−1, 1]. More detail on the user interface is provided in Chapter 4.

3.3.2 Mixed LSTM model

Adjusting the model architecture to allow for specialized handling of observation and control

signals is a key part of the MixedLSTM pipeline. The model in the MixedLSTM pipeline, which

we will hereon refer to as mLSTM, is a multivariate version of the LSTM auto-encoder model

that optimizes two different losses, one for the observation signals and one for the control

signals. Given a multivariate signal x ∈ Rn×d decomposed into rolling window sequences of

size wr = 100, the model reconstructs the input using two LSTM layers. Specifically, the

dimension of a single input is (100, 25) and (100, 55) for SMAP and MSL, respectively.

Layers

The first LSTM layer maps the entire input with dimension (100, d) into a latent space

consisting of lstm_1_units features, which is 60 by default. The output of this layer is an

encoded feature vector of the input of dimensions (1, 60) that can be itself extracted to use

as a compressed form of the original data. In our case, we want to map the latent vector

back into the original input space to reconstruct the original signal. This is accomplished

in the decoding stage. The second LSTM layer takes an input of dimension (100, 60) and

outputs a vector of dimensions (100, 60). This output is then matrix-multiplied with a (60, d)
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dimension dense layer replicated to match the number of features to get the final output. A

schematic of the layers and dimensions can be found in Figure 3.2 below.

Figure 3.2: Illustration of the mLSTM model architecture with dimensions for a hypothetical
input of (100, 25) where w = 100 is the rolling window size, d = 25 is the number of
features/channels, and the LSTM layers each have 80 units.

Loss function

The choice of the loss function is a crucial part of the model that distinguishes it from its

original LSTM-AE counterpart. In the naive approach, we implicitly choose to treat control

signals the way we treat observation signals; no distinction is given to them in modeling,

as mean squared error (MSE) loss is used in both cases. That is, given a batch size of b

containing wr-sized window sequences of observations, we compute

MSE =
1

b

b∑
i=1

(xi − x̂i)
2

where xi is an input sub-sequence and x̂i is the corresponding output reconstructed by the

model. Below, we consider options for using a different loss function depending on the type

of signal, as well as on the state of the signal. In the presence of both observation and control

signals, the model optimizes a joint loss weighted by a loss ratio λ. We experiment with two

configurations:

1. MSE + BCE: Compute the mean squared error for the nobs observation signals and
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the binary cross-entropy loss of the remaining d − nobs control signals. The binary

cross-entropy loss (BCE) as implemented in Keras is

BCE =
b∑

i=1

− (xc,i · log x̂c,i + (1− xc,i) · log(1− x̂c,i))

where xc,i is the input sub-sequence of w control signal values with d − nobs channels

starting at index i, and x̂c,i is the corresponding output sequence from the model.

Note that while xc,i ∈ {0, 1}wr×(d−nobs) since the input was assumed to be binary from

the start, the model output takes on a real value between [0, 1] as it represents the

probability of being in the positive class. The two losses are then weighted by a

parameter λ ∈ [0, 1] that can be set by the user. Thus, the model optimizes the joint

loss

Ljoint = λ · 1
b

b∑
i=1

(xo,i − x̂o,i)
2 + (1− λ)

b∑
i=1

− (xc,i · log x̂c,i + (1− xc,i) · log(1− x̂c,i))

where xo,i, x̂o,i ∈ Rw×nobs is the observation subset and xc,i, x̂c,i ∈ Rwr×(d−nobs) is the

control subset.

2. MSE + FL: Similar to configuration (1), we optimize the MSE for the observation

subset. For the control subset, we use the focal cross-entropy loss (FL) first proposed

by Lin et al [29]. The FL equation is given by

FL = −α(1− pt)
γ log(pt)

where pt is shorthand for

pt =


1 if p = 1

1− p otherwise

and α, γ are parameters representing the following:
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(a) α is a weight-balancing factor for the positive class. It is helpful for control signals

because the classes tend to be imbalanced. Without weighing positive classes more

heavily, the model can end up only outputting 0.

(b) γ is the exponent of the focal parameter, which is pγ if y = 1 and (1 − p)γ

otherwise. Higher values of gamma (> 1) down-weight "easy" examples (those

that the model outputs with high probability). When γ = 0, the FL is just

α-balanced cross entropy loss.

In this case, p is the sigmoid output of the auto-encoder for the control subset sigmoid(ŷc,i).

In Keras, we do not need the sigmoid activation as it can directly compute the loss in

terms of logits instead of probabilities. Thus pt ∈ Rwr×(d−nobs) and is between [0, 1].

The final joint loss is

Ljoint = λ · 1
b

b∑
i=1

(xo,i − x̂o,i)
2 − (1− λ)(α)(1− pt)

γ log(pt)

where λ is the loss ratio defined previously.

This approach accounts for the state of the control signal through the α parameter.

That is, higher values of α allow us to value the positive class predictions more to

mitigate the issues from heavy class imbalance. While γ does not depend on the

control signal state, the imbalance in values of the control signal implicitly makes 0

predictions "easier"; that is, the model often predicts 0 with high confidence.

Hyperparameter tuning

Several parameters must be balanced for both configuration (1) and (2), including but not

limited to α, γ and λ, as well as the number of LSTM units. The authors of [29] note

that as γ increases, the optimal α decreases, reflecting the fact that as easy examples are

down-weighted, less weight needs to be given to the positive class.

While the number of LSTM units is meant to be more of a fixed parameter of the
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primitive/pipeline, we wanted to test a larger number of units as 60 was the default from

the original studies for LSTM-DT and LSTM-AE models [1] which only took in univariate

signals as input.

To get a crude idea of the parameters, we sampled a subset of signals from both SMAP

and MSL and performed a grid search of combinations of α, γ, and the number of LSTM

units. For λ, we found that λ = 0.75 was optimal for capturing the information in the

observation signal, whereas λ = 0.5 placed too much emphasis on the control channels to

be able to extract anomalies from the observation channel. More information is provided in

Section 5.

3.3.3 Post-processing

As with the pre-processing stages, a few modifications were made to obtain the reconstruction

of the control signals and interpret the anomalies detected in each column:

• Thresholding: The model computes losses using logits. Only after prediction do the

control signal channels undergo a sigmoid activation to output a probability between 0

and 1. However, to reconstruct the binary output, a threshold needs to be determined

to transform the probabilities. Since the ratio of 0s and 1s differ drastically from signal

to signal, a fixed threshold would be too inflexible. Therefore, we opted to select the

threshold by optimizing the ratio of the true positive rate (TPR) and false positive rate

(FPR as given by the receiver operating characteristics (ROC) curve, which traces the

TPR/FPR for every threshold between [0, 1]. This can be accomplished by maximizing

the g-means of the ROC curve:

T = argmax
√

TPR · (1− FPR).

• Anomaly scoring: There are two ways of approaching evaluation of control signal

reconstruction, and we talk about each approach more in Chapter 5:
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Figure 3.3: Sample ROC curve for binary threshold of signal ‘E-10’ in SMAP

1. We assume that the control signal contains no anomalies since its state comes from

manual input such as commands. Rather, anomalies occur in the continuous ob-

servation signal. As such, the goal should be to reconstruct the non-noisy part

of the control signal as well as possible so that it can give us accurate informa-

tion about its relation to the observation signal. But ultimately, only anomalous

intervals detected in the observation column should be considered.

2. Perform anomaly detection on all columns independently. Filter and aggregate

the anomalies detected in each column by looking at the intervals detected by the

most columns and/or with the highest severity levels.

45



46



Chapter 4

Meissa

One goal of the thesis is to not only uncover additional insights from explicitly modeling

control signals, but to also provide a user-friendly interface for others to do the same. The

work motivated the creation of a separate anomaly detection library, Meissa, which acts as

an addition to Orion. Meissa extends the existing functionality of Orion by (a) adapting

primitives and pipelines to work for multivariate signals and (b) allowing distinction between

observation and control signals at each of the pre-processing, modeling, and post-processing

stages.

4.1 User Interface

As is the case with Orion, the two main classes of objects in Meissa are primitives and

pipelines, and new pipelines can be constructed from combining primitives. Furthermore, all

pipelines and datasets available on Orion can be accessed through Meissa, as such imports

are made from Orion. This allows for users to seamlessly switch between using existing

univariate pipelines when they suit the task at hand and creating a more specialized version in

Meissa if the user wishes to reconstruct multivariate outputs, or specify different parameters

for control signals.

The primary difference between Orion’s interface and Meissa’s is that users must specify
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the number of observation signal columns (num_obs) either upon initialization of a pipeline,

or when calling a primitive method that distinguishes between observation and control sig-

nals. The methods assume that the data is structured such that the first num_obs channels of

the signal are observation, and those following are all control. If no control signal is specified

(i.e. num_obs = d), then it treats all columns of the multivariate signal as continuous obser-

vation signals. That is, it applies the same parameters to all channels within each primitive

and uses the same MSE loss as opposed to optimizing a joint loss.

4.2 Primitives

As mentioned previously, the primary changes in Meissa are from adapting Orion primitives

to handle multivariate signals, or to allow users to specify different parameters for control vs.

observation signals. We start by describing the steps of creating and calling a primitive in

Meissa before providing examples of where such changes were made, as well as the primitives

that are unique to Meissa.

4.2.1 Creating and calling primitives

Both Orion and Meissa primitives are built on top of MLBlock instances, which is ini-

tialized by parsing a JSON annotation file describing the source library of the method to

import from, the relevant arguments and hyperparameters, and the corresponding fit and

produce methods as described in Section 2.3.1. For example, the JSON annotation for the

split_signal primitive in Figure 4.1 contains a produce field specifying the names and

types of the input arguments as well as outputs for the primitive’s produce method. In this

case, there is no fit method. The hyperparameters entry specifies the names, types, and

default values of each hyperparameter. The names of the inputs and arguments are more

important when building pipelines, since the object being passed through a given stage of

the pipeline is identified through its name in the environment.
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{
"name": "meissa.primitives.timeseries_preprocessing.split_signal",
"contributors": [

"Grace Song <gysong@mit.edu>"
],
"description": "Splits signal into observation and control subsets.",
"classifiers": {

"type": "preprocessor",
"subtype": "transformer"

},
"modalities": [

"timeseries"
],
"primitive": "meissa.primitives.timeseries_preprocessing.split_signal",
"produce": {

"args": [
{

"name": "X",
"type": ["ndarray", "pd.DataFrame"]

}
],
"output": [

{
"name": "X_obs",
"type": "pd.DataFrame"

},
{

"name": "X_ctrl",
"type": "pd.DataFrame"

}
]

},
"hyperparameters": {

"fixed": {
"time_column": {

"type": "str or int",
"default": "timestamp"

},
"num_obs": {

"type": "int",
"default": 1

}
}

}
}

Figure 4.1: Example JSON annotation for the split_signal primitive in Meissa
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from mlstars import load_primitive
from orion.data import load_signal

signal = load_signal('multivariate/M-2')
primitive = load_primitive("meissa.primitives.timeseries_preprocessing.split_signal",

arguments={"time_column": "timestamp", "num_obs": 1})
signal_obs, signal_ctrl = primitive.produce(signal)

Figure 4.2: Example usage of split_signal on ‘M-2’ signal

To call the primitive, we simply load the primitive with the ml-stars1 load_primitive

method and then call primitive.fit(signal) on input DataFrame signal, as seen in

Figure 4.2.

4.2.2 Changes to Orion primitives

The time_segments_aggregate, reconstruction_errors, and find_anomalies primitives

were widely used in Orion, but they were not able to directly work on multivariate signals.

Thus, an initial step was to adapt such functions to work with a variable number of channels.

• Handling 3D arrays: For primitives such as reconstruction_errors that did not

involve operations unique to control signals, the main task was to efficiently apply

the intermediate operations to a 3-dimensional numpy array, whereas functions like

time_segments_aggregate were further adapted to also perform different operations

for observation vs. control signals.

• Added general functionality: The rolling_window_sequences primitive was also adapted

to not only take in multivariate signals and output, but also to produce different input

and target sequences for the model depending on whether the setting specified was

reconstruction or prediction.

• Anomaly scoring for multiple columns: The find_anomalies primitive in Meissa was

unique in the sense that even for a multivariate signal, the operations were applied
1https://pypi.org/project/ml-stars/

50

https://pypi.org/project/ml-stars/


independently for each channel such that anomalies were scored only using the error

values in that particular channel. This allows for users only examining observation

signals for anomalies to see results without interference from other channels.

4.2.3 New primitives

To support the functionality of a heterogeneous and multivariate signal pipeline, a handful

of new primitives were created:

• split_signal / merge_signal: As the name suggests, split_signal split a signal

into observation and control subsets using the provided num_obs parameter. On the

other hand, merge_signal performs the reverse operation by concatenating the ob-

servation and control subsets. In the pipeline, split_signal is called first to enable

easy handling of observation-specific operations such as specifying the mean for ag-

gregation and imputation, and scaling to between [−1, 1]. merge_signal is called

before rolling_window_sequences since it does not apply special operations to con-

trol signals and allows for the model primitive in the next stage to work with a sin-

gle input. When no control signals are specified, the observation subset returned by

split_signal is an empty pandas DataFrame.

• aggregate_predictions: This primitive aggregates the reconstructed time series such

that only one prediction remains at each timestep, as described in Section 2.3.5. In

Orion, this operation was part of reconstruction_errors. However, with heteroge-

neous signals it was convenient to perform the aggregation before computing errors so

that the control signal channel predictions can be thresholded using the aggregated

values.

• threshold_predictions: As mentioned in Section 3.4.3, thresholding was needed to

convert the outputted probabiltiies into binary values again. This primitive returns a

threshold found from maximizing the G-means of the TPR/FPR ratio as described.
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Alternatively, the user can supply a fixed threshold to apply to all control signal chan-

nels.

4.3 Pipelines

4.3.1 Creating and calling pipelines

The modularity of MLBlock instances allows them to be composed into an end-to-end pipeline

suited for a particular data analysis task. Similar to primitives, pipelines in Meissa are

special instances of the MLPipeline class. To create a new pipeline, the user must specify

the following, typically as a JSON annotation:

• primitives: a list of the names of primitives composing the pipeline

• init_params: a dictionary containing, for each primitive, a mapping of arguments and

their initialization values.

• input_names: a dictionary containing, for each primitive, a mapping of arguments with

the actual name of the input that the primitive should expect. This allows users to

pass the same variable to multiple primitives, even if the primitives name the argument

differently.

• output_names: a dictionary containing, for each primitive, a mapping of outputs with

the name that it should be renamed to.

The Meissa class allows users to directly initialize an MLPipeline instance instead of through

MLBlocks and has attributes and methods specific to anomaly detection applications. To

initialize an instance of a pipeline in Meissa, the user can call pipeline = Meissa() with

the following arguments:

• pipeline: a string denoting the name of the MLPipeline instance to import, a dic-

tionary representing the JSON annotation of the pipeline as described above, or an
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MLPipeline instance.

• num_obs: the number of observation signal channels in the data. Assumes that the

channels are ordered such that the first num_obs channels of the signal are observation,

and the remaining are control.

• hyperparameters: a dictionary of hyperparameters for each primitive of the pipeline.

Should contain, for each primitive, a mapping of hyperparameter names to the desired

value. If a hyperparameter value is not specified, it uses the default value specified in

the JSON annotation of the primitive.

Similar to MLPipeline, calling the pipeline’s fit method will iteratively call the fit

method of all the primitives. In an ML-based AD setting, this would also initiate the

model training process. After fitting the pipeline, one calls detect – this iteratively calls

the produce methods of all the primitives in the pipeline, which could include generating

the model’s prediction or reconstruction of the signal, as well as computing errors and the

detected anomalies.

Additionally, a Meissa pipeline has a fit_detect method that performs the pipeline fit-

ting and anomaly detection at once, as well as an evaluate method that calls the produce

methods and scores the detected anomalies against a provided ground truth set of anoma-

lies. Table 4.1 summarizes the Meissa pipeline interface, and Figure 4.3 shows an ex-

ample of initializing the MixedLSTM pipeline and fitting it on a signal from the SMAP

dataset. Note that in the code, mixed_lstm is the name of the pipeline in the library,

while meissa.primitives.mixed.MixedLSTM is the path to the mLSTM model.

From the perspective of the user, the process of creating a pipeline in Meissa is the same as

in Orion except for the num_obs initialization parameter. However, there are a few differences

under the hood depending on the primitives used. If the user specifies different parameters

for control signals vs. observation signals (e.g. using "max" for the former and "mean" for

the latter), the split_signal primitive divides the input signal into its observation and
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Method Parameters Returns
fit data (pd.DataFrame) —

detect
data (pd.DataFrame)
visualization (bool) pd.DataFrame of detected

anomalies

fit_detect
data (pd.DataFrame)
visualization (bool) pd.DataFrame of detected

anomalies

evaluate

data (pd.DataFrame)
ground_truth (pd.DataFrame)
fit (bool)
train_data (pd.DataFrame)
metrics (list)

pd.Series of scores of the
detected anomalies against
ground truth anomalies

Table 4.1: Summary of Meissa pipeline methods

control subsets using num_obs and applies the subsequent primitives separately to them.

Before passing into a model, the signal needs to be re-combined into one input; this is done

using the merge_signal primitive.

The below describes a typical sequence for working with a heterogeneous, multivariate

signal in Meissa:

1. User provides input signal and num_obs, the number of observation columns

2. Split input into observation and control subsets and apply respective aggregation and

imputation methods. Scale observation signal to a desired range, if needed

3. Merge observation and control signals and generate rolling window sequences

4. Fit model on data and predict or reconstruct the test set

5. Determine a binary threshold for control signal columns either from manual input or

from optimizing FPR/TPR rate

6. Apply threshold and compute errors/anomalies as normal
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from meissa import Meissa
from orion.data import load_signal, load_anomalies

signal = load_signal("multivariate/M-2")
ground_truth = load_anomalies("M-2")

meissa = Meissa("mixed_lstm",
num_obs=1,
hyperparameters={

"meissa.primitives.timeseries_anomalies.find_anomalies#1": {'fixed_threshold': False},
"meissa.primitives.mixed.MixedLSTM#1": {

'focal_alpha': 0.25,
'focal_gamma': 2
}

})

# fit primitives
meissa.fit(signal)

# reconstruct signal and find anomalies
anomalies = meissa.detect(signal)

# score anomalies; note that evaluate() calls detect() again
scores = meissa.evaluate(signal, ground_truth, fit=False)

Figure 4.3: Example of initializing the MixedLSTM pipeline through Meissa and calling meth-
ods

4.3.2 MixedLSTM Pipeline

As the name suggests, the MixedLSTM pipeline enables end-to-end reconstruction-based AD

built around the mLSTM model. Below are the primitives of the pipeline; much of the

workflow follows that of the LSTM auto-encoder pipeline. The difference is that differ-

ent parameters can be specified for control vs. observation signals for primitives such as

time_segments_aggregate, and split_signal/merge_signal is called to streamline this

functionality.

1 "primitives": [

2 "meissa.primitives.timeseries_preprocessing.split_signal",

3 "meissa.primitives.timeseries_preprocessing.time_segments_aggregate",

4 "sklearn.impute.SimpleImputer",

5 "sklearn.impute.SimpleImputer",

6 "sklearn.preprocessing.MinMaxScaler",

7 "meissa.primitives.timeseries_preprocessing.merge_signal",

8 "meissa.primitives.timeseries_preprocessing.rolling_window_sequences",
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9 "meissa.primitives.mixed.MixedLSTM",

10 "meissa.primitives.timeseries_errors.aggregate_predictions",

11 "meissa.primitives.timeseries_errors.threshold_predictions",

12 "meissa.primitives.timeseries_errors.reconstruction_errors",

13 "meissa.primitives.timeseries_anomalies.find_anomalies"

14 ]

Figures 4.4 and 4.5 walk through how input data is changed after going through each

primitive in the MixedLSTM pipeline. Note that in the illustrations, the examples do not

necessarily follow each other; for instance, the SimpleImputer example provides a version

of the signal that has missing values to show the functionality of the primitive. We’d also

like to highlight how primitives in the pipeline can be specified to apply:

1. the same transformations to both observation and control signals;

2. different transformations to observation and control signals; and

3. transformations to only observation signals or only control signals.

For instance, MinMaxScaler is only applied to the observation signal channels in MixedLSTM

since we assume that the control signals only take on values of {0, 1} by default, and

threshold_predictions is only applied to the control signals to convert the continuous

probabilities into the same binary values. Such flexibility is achieved from calling split_signal

to separate the original input and calling merge_signal when it is convenient for applying

the same operation to all channels.
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Figure 4.4: Illustration of transformations made by each primitive in the pre-processing
stage.
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Figure 4.5: Illustration of transformations made by each primitive in the modeling and post-
processing stage.
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Chapter 5

Results

5.1 Benchmarking

To gauge the performance of a new pipeline, we use the benchmark framework available

in Orion. The benchmark functionality is one of the core contributions of Sintel, as it

provides an easy interface for evaluating pipelines and comparing them on even ground.

The Orion benchmark API measures the quality of the detected anomalies using standard

metrics such as precision, recall, and F1 score, but also define weighted and overlapping

segment score, which are more informative for AD tasks [7]. Additionally, information about

the computational cost of training a pipeline and predicting/reconstructing a given signal is

provided to help assess deployability and find bottlenecks in the pipeline.

Following the dominant approach for assessing AD pipelines, the benchmark function

assesses the naive and mixed pipelines by training on a non-anomalous subset of each sig-

nal, and predicting on the held out subset containing anomalies. While this is a standard

approach, it is still not practical in settings such as online environments where data is ex-

pected to be analyzed as they come in, as well as where labeled data is not available within

a reasonable timeframe. As such, we also test the Mixed LSTM pipeline in a completely un-

supervised case where model trains and predicts on the entire signal. As for scoring, we use
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an unweighted approach where an anomalous segment detected by the model is considered

a true positive if it overlaps with any part of the true anomalous segment.

5.2 Naive Approach

The first step was to get an idea of the baseline performance of two stndard pipelines when

taking in both observed and control signals. To start, we ran the LSTM-DT and LSTM-

AE pipeline on all multivariate SMAP and MSL datasets since it the architecture used

originally by Hundman et al [1]. From hereon out, we will refer to these configurations as

naive multivariate versions of the two pipelines, while the official benchmark results from

Orion are from the univariate version of the pipelines. All training and scoring was done in

Orion.

We found that anomaly detection scores from the naive multivariate and univariate

pipelines were similar for both LSTM-DT and LSTM-AE, although there were significant dif-

ferences between the two datasets. Predicting on multivariate data for LSTM-DT produced

higher precision for MSL data, but less for the SMAP data, suggesting that when predicting

on multivariate data, the model may be more sensitive to hyperparameter changes in terms

of the number of false positives detected. As we will see in the following sections, the number

of false positives grows significantly when all channels are modeled and analyzed.

Table 5.1: Benchmark results of LSTM-DT on multivariate (left) vs. univariate (right)
satellite data

Precision Recall F1
MSL 0.407 0.667 0.503
SMAP 0.546 0.791 0.646

Precision Recall F1
MSL 0.373 0.694 0.485
SMAP 0.650 0.776 0.707

The relative performance between multivariate and univariate inputs for LSTM-AE is

similar to that of LSTM-DT: precision of the multivariate case was also higher for MSL but

lower for SMAP data.
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Table 5.2: Benchmark results of LSTM-AE on multivariate (left) vs. univariate (right)
satellite data

Precision Recall F1
MSL 0.514 0.528 0.521
SMAP 0.625 0.746 0.680

Precision Recall F1
MSL 0.373 0.694 0.485
SMAP 0.650 0.776 0.707

5.3 Mixed approach

As described in Chapter 3, we propose a mixed LSTM auotencoder model mLSTM that opti-

mizes separate loss functions for conrol vs. observation signals. Below we report the process

for selecting the loss function for control signals and tuning parameters for benchmarking.

5.3.1 Choice of loss function

Binary cross-entropy

One potential source of variation in the mLSTM model is the choice of loss function for

the control signal channels. A simple and intuitive option is to use binary cross-entropy

(BCE) loss since the control signal values are in {0, 1}. The mLSTM model by default uses

tf.keras.losses.BinaryFocalCrossentropy loss; to use binary cross-entropy loss for con-

trol signals, one simply needs to set apply_class_balancing = False and gamma = 0 and

pass it in as a hyperparameters dictionary during initialization. Figure 5.1 shows an example

of how to load such a pipeline to use mixed MSE and BCE loss.

We benchmarked the pipeline with mixed MSE and BCE loss on all of the SMAP and

MSL datasets for varying numbers of LSTM units. Table 5.3 show the full results. Because

the number of units is a more fixed attribute of the model, we decided to not make it directly

modifiable through the pipeline’s interface. Rather, one must explicitly modify the number of

LSTM units by passing in an edited version of the layers dictionary in the hyperparameters.

Figure 5.1 shows an example of this as well.

Overall, using BCE loss for the control signal channels improves the average performance
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from meissa import Meissa
from orion.data import load_signal
from mlstars import load_primitive

# Get layers of mLSTM model to modify the number of LSTM units
lstm_units = 80
mixed_lstm = load_primitive('meissa.primitives.mixed.MixedLSTM')

layers = mixed_lstm.get_hyperparameters()['layers']
for layer_idx in [0, 2]:

layers[layer_idx]['parameters']['units'] = lstm_units

# Load pipeline and set hyperparameters
hyperparameters={

'meissa.primitives.timeseries_anomalies.find_anomalies#1': {'fixed_threshold': False},
'meissa.primitives.mixed.MixedLSTM#1': {

'layers': layers,
'gamma': 0, # no focal parameter
'apply_class_balancing': False

}
}

meissa = Meissa(
pipeline="mixed_lstm",
hyperparameters=hyperparameters

)

Figure 5.1: Example code loading the MixedLSTM pipeline with BCE loss and a custom
number of LSTM units
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LSTM Units Dataset Precision Recall F1

60 MSL 0.531 0.472 0.500
SMAP 0.884 0.567 0.691

80 MSL 0.643 0.500 0.563
SMAP 0.886 0.582 0.703

120 MSL 0.667 0.500 0.571
SMAP 0.857 0.537 0.661

Table 5.3: Full results from running the MixedLSTM pipeline with binary cross-entropy loss
for control signals for varying number of LSTM units.

across the two datasets compared to incorporating them naively. For 80 LSTM units, the

precision and F1 score for the two datasets was higher than that of running LSTM-AE and

LSTM-DT naively on multivariate data (see Figures 5.1 and 5.2), although the recall was

lower. With respect to datasets, the MixedLSTM model with 80 and 120 units outperformed

both the naive multivariate and univariate versions of LSTM-DT/LSTM-AE on the MSL

dataset, but not SMAP. Specifically, the F1 score of the univariate LSTM-DT and LSTM-

AE pipelines was .707, while the highest F1 score on the SMAP dataset for mixed MSE and

BCE pipeline was .703. The relative difference in performance between SMAP and MSL

motivates further exploration into the differences in the frequency and types of anomalies

between the two datasets.

As mentioned in Chapter 3, one limitation of BCE is it does not handle imbalanced

classes unless a weight parameter is specified, which can be detrimental when certain chan-

nels contained sparse positive examples. When using BCE naively without weighing classes,

the model ended up predicting 0 for many of the control signal channels since it minimized

the overall loss. In the case of control signals in our dataset, the sparse positive examples po-

tentially indicates useful information such that may be correlated with an event or disruption

in the observation time series.
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Binary focal cross-entropy

To more faithfully reconstruct the control signals, we opted for the binary focal cross-entropy

loss (FL) when benchmarking the pipeline. As described in Chapter 3, FL has two parame-

ters, α and γ, that can modulate the weight given to positive vs. negative classes as well as

to high-confidence vs. low-confidence predictions. To select the parameters tested, we first

performed a grid search of hyperparameters and selecting the best performing configurations

on the sample set based on F1 score. More details and full results are provided below.

5.3.2 Hyperparameter tuning

To understand the impact of α and γ on reconstruction ability, we perform a coarse hyper-

parameter search similar to what Lin et al [29] had done for their object detection task. We

also varied the number of LSTM units between 60, 80, and 120 for both the encoder and

decoder. The pipeline with the given set of hyperparameters was run on a random sample

of 10 signals (‘E-1’ ‘E-2’ ‘M-6’ ‘S-1’ ‘P-1’ ‘M-1’ ‘E-3’ ‘M-2’ ‘P-10’ ‘S-2’), with 5 from each

of the SMAP and MSL data. We test α values of 0.25, 0.5, 0.75, and 0.9 and γ values of

0, 0.1, 0.2, 0.5, 1 and 2 as Lin et al had done.

Overall, increasing α – the weight given to positive classes – increased the model’s ability

to detect anomalies, as the average number of true positives increases with α. The optimal γ

parameter depends on the relative magnitude of α as discussed in Section 3.3.2, as increasing

the positive class weight decreases the need to penalize confident errors and vice versa. We

observe this effect even with our test on a subset of samples, as similar precision and recall

was obtained for varying combinations of α and γ. For example, when using 80 LSTM units,

we see performance increasing with γ at α = 0.25 and α = 0.5, while the effect of γ was

more variable for higher values of α. The full results in can be found in Table 5.4.

The number of LSTM units had a less discernible difference on performance, as the

average precision and recall was similar between the three settings. Setting the number of
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α γ fp fn tp

0.25

0.0 2 7 6
0.1 4 5 8
0.2 2 6 7
0.5 3 6 7
1.0 2 5 8
2.0 3 5 8

0.5

0.0 1 6 7
0.1 3 6 7
0.2 1 6 7
0.5 1 5 8
1.0 1 7 6
2.0 1 6 7

0.75

0.0 1 6 7
0.1 1 6 7
0.2 1 5 8
0.5 3 5 8
1.0 3 6 7
2.0 1 6 7

0.9

0.0 3 5 8
0.1 2 7 6
0.2 0 7 6
0.5 2 7 6
1.0 1 7 6
2.0 2 5 8

(a) 60 LSTM units

α γ fp fn tp

0.25

0.0 0 7 6
0.1 1 7 6
0.2 1 6 7
0.5 3 5 8
1.0 0 6 7
2.0 2 5 8

0.5

0.0 1 7 6
0.1 2 6 7
0.2 3 6 7
0.5 2 6 7
1.0 4 5 8
2.0 1 6 7

0.75

0.0 3 6 7
0.1 0 6 7
0.2 1 5 8
0.5 1 5 8
1.0 3 5 8
2.0 3 6 7

0.9

0.0 1 6 7
0.1 2 6 7
0.2 2 5 8
0.5 0 6 7
1.0 2 7 6
2.0 3 5 8

(b) 80 LSTM units

α γ fp fn tp

0.25

0.0 3 6 7
0.1 0 6 7
0.2 4 6 7
0.5 2 7 6
1.0 4 6 7
2.0 4 5 8

0.5

0.0 0 6 7
0.1 1 6 7
0.2 3 5 8
0.5 1 7 6
1.0 3 6 7
2.0 3 5 8

0.75

0.0 3 6 7
0.1 0 6 7
0.2 1 6 7
0.5 1 6 7
1.0 3 7 6
2.0 0 6 7

0.9

0.0 1 6 7
0.1 0 6 7
0.2 1 5 8
0.5 1 6 7
1.0 1 5 8
2.0 1 5 8

(c) 120 LSTM units

Table 5.4: Results from running the MixedLSTM pipeline with varying focal loss hyperpa-
rameters on a subset of 10 signals. Tables are organized by the number of LSTM units and
report the number of false positives, false negatives, and true positives.

LSTM units to 80 produced marginally better detection ability; we use 80 units for the full

benchmark below but want to note that the effect on performance seems to be less than

tuning the focal loss parameters. In practice, the parameters and desired precision-recall

ratio should be chosen based on the context of the anomaly detection task.

5.3.3 Benchmark results

To benchmark the MixedLSTM pipeline with focal loss, we selected the 7 best performing

α, γ combinations based on F1 score from the sample run in Section 5.3.2 and evaluated
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α γ Precision Recall F1

0.25 1.0 0.643 0.500 0.563
2.0 0.724 0.583 0.646

0.75
0.1 0.590 0.639 0.613
0.2 0.724 0.583 0.646
0.5 0.526 0.556 0.541

0.90 0.2 0.586 0.472 0.523
0.5 0.475 0.528 0.500

(a) SMAP dataset

α γ Precision Recall F1

0.25 1.0 0.881 0.552 0.679
2.0 0.814 0.522 0.636

0.75 0.1 0.837 0.537 0.655
0.2 0.902 0.552 0.685
0.5 0.822 0.552 0.661

0.9 0.2 0.925 0.552 0.692
0.5 0.900 0.537 0.673

(b) MSL dataset

Table 5.5: Benchmark results of MixedLSTM pipeline with mixed MSE and focal loss on
multivariate SMAP/MSL data

on the entire SMAP and MSL datasets. While testing so many parameter combinations

is unrealistic in practice, it was important to try a wide range of values in our case since

we were experimenting with a new architecture and needed greater understanding of how

sensitive AD ability is to the parameters of the focal loss. We report the precision, recall

and F1 scores of MixedLSTM below (Table 5.5) and compare it to the benchmark results of

other pipelines in Orion, as well as the mixed MSE and BCE pipeline.

As for the effect of α and γ on anomaly detection ability, we notice a stark difference

depending on the dataset. For instance, the average precision and F1 score of the pipeline

increased as α increased for the MSL signals; this was almost the opposite case for SMAP,

where the pipeline scored the lowest when α was 0.9. Another observation is that the recall

stays mostly constant within the same values of α for the MSL dataset, but varied greatly

for SMAP. This may indicate that predicted values for the control channels were much more

variable for SMAP data, hence down-weighting confident observations had a more noticeable

effect on overall performance. This demonstrates the importance of having experts provide

feedback to the AD system and tune parameters according to what they understand about

the data, as well as a deeper exploration into the differences between the two datasets.

Compared to the naive multivariate and univariate LSTM-AE pipeline, all configurations

benchmarked outperformed the previous models for MSL, while the performance of half the

configurations was comparable or better for SMAP. We also looked at the performance of
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Precision Recall F1
MSL 0.564103 0.611111 0.586667
SMAP 0.806452 0.746269 0.775194

Table 5.6: Benchmark results of AER on univariate SMAP and MSL data (Source: Orion)

the Auto-encoder with Regression (AER) model by Wong et al [15], which currently has the

strongest performance out of all pipelines benchmarked in Orion (see Table 5.6). The model

produces both a reconstructed sequence as well as forward and backward predictions and

adds masking to its smoothing step to reduce the incidence of false positives at the beginning

of sequences. We found that AER outperformed MixedLSTM on the SMAP dataset, but the

reverse was true for MSL.

We further examine the cases in which MixedLSTM outperforms AER, and vice versa. We

chose to use the results of the MixedLSTM pipeline with α = 0.75 and γ = 0.2 since it had

the highest averaged F1 score between both datasets.

In terms of number of true anomalies detected – true positives, or TPs – AER outper-

formed on 20/80 signals while MixedLSTM outperformed on 8/80. In the first case, there were

35 total anomalies among the 20 signals, of which AER detected 31 while MixedLSTM de-

tected 7. Furthermore, Out of the MixedLSTM wins, all 10 total true anomalies were detected

by the model as opposed to AER, which did not detect them.

52 signals were tied between MixedLSTM and AER in the number of TPs. Out of these

cases, 1 signal (‘M-3’) had lower precision (i.e. more false positives) for MixedLSTM than

AER. Specifically, MixedLSTM had 1 false positive (FP) and 1 false negative (FN), while

AER only had the FN. There were 13 signals where the opposite was true: the number of

TPs were equal, but AER had lower precision. AER had 19 total FPs among this subset,

while MixedLSTM had one. The remaining 38 out of 52 were true ties – that is, the number

FPs, FNs, and TPs were equal. A side-to-side comparison of the results between AER and

SMAP at the signal level can be found in Table A.1 in the Appendix.
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5.4 Error and anomalies aggregation

While we reconstruct all channels of the signal for the results above, only the observation

signal is used for detecting anomalies and scoring. This reflects the approach taken for

benchmarking other pipelines in Orion and in much of the AD literature in the past. However,

we also wanted to examine ways of incorporating the reconstruction error of the control signal

columns into the anomaly detection process.

A simple approach we looked into was calling find_anomalies on each channel indepen-

dently and aggregating the detected intervals based on the relative score. The issue is that if

we simply took all of the anomalies detected in the control signal columns as truth, we would

have an abundance of false positives. Indeed, we observed that the number of false positives

scaled linearly with the number of control signal channels. Thus, some level of filtering is

needed. An example scheme would be to consider an anomalous interval detected in a chan-

nel as a “vote” for that interval, and overlapping intervals detected in other channels add

additional votes. Thus, the probability of an interval being truly anomalous can be ranked

according to the number of channels it was detected in. Another source of information is

the severity score associated with the detected anomaly, which can be used as a weight for

the likelihood of an anomaly being a true anomaly.

Unfortunately, we found several limitations with such an approach, which we will illus-

trate through an example signal. Table 5.7 shows the first 5 anomalies detected by the

MixedLSTM model with α = 0.75 and γ = 0.2 compared to the true anomalies of the ‘P-11’

signal. The model detects the first ground-truth anomaly in the observation channel (channel

0) but not the second.

In total, 54 anomalies were detected among the 55 channels. Out of those detected anoma-

lies, 5 overlapped with the first ground truth anomaly, and 5 overlapped with the second

ground truth anomaly. While the above sounds promising for incorporating anomalies de-

tected in control signal channels, the channels that identified such anomalies all had relatively
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channel start end severity

0 0 1346954400 1350172800 0.129006
1 11 1333908000 1336435200 0.247503
2 12 1222819200 1224007200 0.464919
3 19 1226361600 1230120000 1.439419
4 19 1262887200 1266645600 1.439419

start end

0 1346954400 1349546400
1 1335290400 1337580000

Table 5.7: First 5 detected anomalies (left) from MixedLSTM and true anomalies (right) of
signal ‘P-11’ from the MSL dataset

low scores: the average severity score among channels that detected the first ground-truth

anomaly was 0.28 and 0.42 for the second ground-truth anomaly. Even from looking at the

subset of detected anomalies in Table 5.7, the interval in channel 11 overlaps with the second

ground-truth anomaly, but the severity score is lower than all the other intervals below it

which corresponded to false positives. Even in terms of frequency (number of channels that

detected the anomaly), there were 3 other intervals detected that had the same number of

"votes" from different channels.

One potential way to reduce the frequency of this issue is by using the relative ranking of

the anomaly score for that channel instead of the true severity value. Additionally, one could

consider recomputing the anomaly scores in terms of the error magnitudes across all channels

at once, rather than independently, could create a way of more fairly ranking the anomaly

severities globally. However, scaling would need to be done first such that all channels fall

between the same range of values.

As evidenced above, there are many possibilities for explicitly incorporating the con-

trol signal in the post-processing stages of the AD pipeline, and we discuss some possible

explorations in Chapter 6 before concluding.
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Chapter 6

Discussion

In this chapter, we offer further interpretation of the results, discuss the limitations of the

thesis work, and offer suggestions for future work.

6.1 Limitations

6.1.1 Control signal representation

As it stands, the Meissa pipelines assume that the control signal is binary and takes on [0,

1]. However, this is a simplified view as control signals can very well be categorical with

more than 2 classes; for instance, one can imagine a sensor switch with n > 2 settings). It

could also even be continuous, although those situations could be more complicated in that

they share more similarities with the observation signal (and thus could do well with the

same loss as in the naive method), but differ in a harder-to-observe way.

Additionally, the current approach aims to reconstruct the control signal faithfully by

computing a threshold that maximizes alignment with the input signal. This does reduce

the amount of information given by the reconstruction, as the output probabilities provides a

more granular representation of what state the model anticipates the control signal to be in.

Future iterations can look into ways of computing errors by using the output probabilities
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as opposed to the thresholded output.

6.1.2 Balancing precision and recall

From the MixedLSTM benchmark results section in 5.3.3., we saw how introducing focal

loss improved detection ability on the MSL dataset significantly, but lowered recall for the

SMAP dataset. In general, introducing the focal parameter (1− pt)
γ for γ > 0 reduces the

incidence of false positives. This is consistent with the role of γ as a penalizing factor for

over-confident false predictions that scales exponentially with the magnitude of γ. However,

the model struggled with detecting anomalies when γ was too high for the given α weight,

which we saw in the case of the SMAP dataset when α = 0.9 and γ = 0.5. Furthermore, the

optimal α and γ values differed significantly between datasets, which can make selecting the

right values for generalization tricky.

One approach to improving recall is to incorporate control signals at the post-processing

stage as well, rather than just the modeling stage. We can consider detecting anomalies

by analyzing the reconstruction error for all channels, not just the observation channel, as

discussed in Section 5.4. The drawback is that evaluating each channel independently at

the anomaly detection stage (by applying find_anomalies to each column one at a time)

means that the information in a given channel can be more easily dominated by the noise

in that channel, leading to many disjoint false positive intervals. To prevent the number of

false positives from scaling linearly with the number of channels, it is necessary to employ

an aggregation scheme that takes into account the number of channels that had an anomaly

in a given interval while also weighing severity and the relative importance of each channel,

if such information is known. Consider the case where only 1 or 2 channels are correlated

with true feature due to their unique role; we want to make sure those channels are still

considered if they have high anomaly score, even though the anomalies form a minority

among all channels.

72



6.1.3 Practicality

The goal of every framework in Sintel is to enable users to improve performance on real-life

AD tasks. In such cases, fully unsupervised methods are generally better where labeled data

isn’t readily available. On the other hand, the benchmark functionality takes on more of a

semi-supervised approach where the pipeline is purposefully trained on non-anomalous data

points so that it can more clearly construct a representation of normal patterns. Furthermore,

the pipeline constructed is reconstruction-based, which has its own limitations. It would

be useful to consider a more online workflow using a prediction-based pipeline since in

mixed_lstm, given information about a signal up to time t, it cannot offer predictions about

its properties at t+ 1; it can only look back at what’s been collected so far.

6.2 Future work

6.2.1 More complex architecture

Currently, the MixedLSTM model is just a simple auto-encoder with one LSTM layer for

each of the encoder and decoder layers. The simplicity of the architecture was helpful for

providing a basis for comparing to the existing Orion pipelines since it was the same as

the original LSTM-AE pipeline benchmarked on SMAP/MSL save for the input and output

dimensions.

Similarly, can look into other loss functions that vary based on the state of the control

signal. Focal cross-entropy kind of includes this by default but there could be more effective

and generalizable methods. Again, we would ideally want to also be able to handle cases

where the control signal has more than two classes of values.
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6.2.2 Signal-specific error computation

It would be of interest and value to explore ways of computing regression/reconstruction

errors differently for control signals, depending on whether the end task includes detecting

anomalies in the control signal channels or not. This also depends on the representation of

the control signal, where if we used the output probabilities as mentioned in 6.6.1., it may

be more suited for certain types of error computations.

6.3 Conclusion

In summary, this thesis has demonstrated the potential of incorporating control signals into

the anomaly detection process for multivariate, heterogeneous time series data. We developed

a reconstruction-based pipeline, MixedLSTM, with pre-processing, modeling, and evaluating

methods that consider both observation and control signals and provide a user-friendly in-

terface to access and create such pipeline through the Meissa library. Our experiments using

data from the NASA Soil Moisture Active Passive (SMAP) satellite and the Mars Science

Laboratory (MSL) Rover validate the efficacy of our approach, outperforming the univariate

and naive multivariate LSTM pipelines on the majority of signls. These advancements high-

light the importance of leveraging all available data, including control signals, to improve

the robustness and accuracy of anomaly detection systems, thereby reducing the reliance on

human expertise and enhancing operational efficiency in various applications. Future work

can build on these findings to further refine and expand the methodologies for even broader

applicability.
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Appendix A

Comparison of MixedLSTM and AER

Dataset Signal FNm FPm TPm F1m FNa FPa TPa F1a

MSL C-1 1 0 1 0.667 1 2 1 0.4

MSL C-2 2 0 0 – 1 0 1 0.667

MSL D-14 1 0 1 0.667 0 0 2 1.0

MSL D-15 0 1 1 0.667 1 0 0 –

MSL D-16 0 0 1 1.0 0 0 1 1.0

MSL F-4 1 1 0 – 1 4 0 –

MSL F-5 0 0 1 1.0 0 1 1 0.667

MSL F-7 0 0 3 1.0 3 0 0 –

MSL F-8 0 0 1 1.0 0 2 1 0.5

MSL M-1 1 0 0 – 0 1 1 0.667

MSL M-2 0 2 1 0.5 1 0 0 –

MSL M-3 1 1 0 – 1 0 0 –

MSL M-4 0 1 1 0.667 1 1 0 –

MSL M-5 1 0 0 – 1 0 0 –

MSL M-6 0 0 1 1.0 0 0 1 1.0
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MSL M-7 0 0 1 1.0 0 1 1 0.667

MSL P-10 0 0 1 1.0 0 0 1 1.0

MSL P-14 0 0 1 1.0 0 0 1 1.0

MSL P-15 0 0 1 1.0 0 0 1 1.0

MSL S-2 0 0 1 1.0 0 0 1 1.0

MSL T-12 1 0 0 – 1 2 0 –

MSL T-13 2 1 0 – 1 0 1 0.667

MSL T-4 0 0 1 1.0 0 0 1 1.0

MSL T-5 0 0 1 1.0 0 0 1 1.0

MSL T-8 2 1 0 – 0 2 2 0.667

MSL T-9 1 0 1 0.667 1 0 1 0.667

SMAP A-1 0 0 1 1.0 0 0 1 1.0

SMAP A-2 0 0 1 1.0 0 0 1 1.0

SMAP A-3 0 0 1 1.0 0 1 1 0.667

SMAP A-4 0 0 1 1.0 0 0 1 1.0

SMAP A-5 0 0 1 1.0 0 0 1 1.0

SMAP A-6 0 0 1 1.0 0 0 1 1.0

SMAP A-7 1 0 0 – 0 0 1 1.0

SMAP A-8 1 1 0 – 0 0 1 1.0

SMAP A-9 1 0 0 – 1 1 0 –

SMAP B-1 0 0 1 1.0 1 1 0 –

SMAP D-1 0 0 1 1.0 0 0 1 1.0

SMAP D-11 0 0 1 1.0 0 0 1 1.0

SMAP D-12 0 0 1 1.0 0 0 1 1.0

SMAP D-13 0 0 1 1.0 0 1 1 0.667

SMAP D-2 0 0 1 1.0 0 0 1 1.0

SMAP D-3 1 0 0 – 0 0 1 1.0
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SMAP D-4 1 0 0 – 1 0 0 –

SMAP D-5 1 0 0 – 1 0 0 –

SMAP D-6 0 0 1 1.0 0 1 1 0.667

SMAP D-7 0 0 1 1.0 0 0 1 1.0

SMAP D-8 0 0 1 1.0 0 0 1 1.0

SMAP D-9 0 0 1 1.0 0 0 1 1.0

SMAP E-1 1 0 1 0.667 0 0 2 1.0

SMAP E-10 1 0 1 0.667 0 0 2 1.0

SMAP E-11 1 0 1 0.667 0 1 2 0.8

SMAP E-12 2 1 0 – 0 1 2 0.8

SMAP E-13 3 0 0 – 2 0 1 0.5

SMAP E-2 0 0 1 1.0 1 0 0 –

SMAP E-3 1 0 0 – 0 0 1 1.0

SMAP E-4 1 0 0 – 1 1 0 –

SMAP E-5 1 0 0 – 0 1 1 0.667

SMAP E-6 0 0 1 1.0 0 0 1 1.0

SMAP E-7 0 0 1 1.0 0 0 1 1.0

SMAP E-8 1 1 0 – 0 0 1 1.0

SMAP E-9 0 0 1 1.0 0 0 1 1.0

SMAP F-1 1 1 0 – 1 1 0 –

SMAP F-2 0 0 1 1.0 0 0 1 1.0

SMAP F-3 1 0 0 – 1 0 0 –

SMAP G-1 1 0 0 – 1 1 0 –

SMAP G-2 0 0 1 1.0 0 0 1 1.0

SMAP G-3 0 0 1 1.0 0 1 1 0.667

SMAP G-4 0 0 1 1.0 0 0 1 1.0

SMAP G-6 0 0 1 1.0 0 0 1 1.0
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SMAP G-7 2 0 1 0.5 0 0 3 1.0

SMAP P-1 3 0 0 – 3 0 0 –

SMAP P-3 0 0 1 1.0 0 0 1 1.0

SMAP P-4 2 0 1 0.5 0 0 3 1.0

SMAP P-7 1 0 0 – 0 0 1 1.0

SMAP R-1 0 0 1 1.0 0 0 1 1.0

SMAP S-1 0 0 1 1.0 1 0 0 –

SMAP T-1 1 0 1 0.667 1 0 1 0.667

SMAP T-2 0 0 1 1.0 1 0 0 –

SMAP T-3 0 0 2 1.0 0 0 2 1.0

Table A.1: Full benchmark results for (1) MixedLSTM (subscript m) with parameters α =
0.75, γ = 0.2, and 80 LSTM units; (2) AER (subscript a).
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