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Abstract
In this thesis, we detail developments to SigPro, a feature engineering library in
Python guided by Subject Matter Experts (SMEs). SigPro includes a suite of data
processing building blocks, or primitives, as well as an algorithm to combine primitives
to form feature engineering pipelines. These pipelines are in turn used to construct
features for machine learning.

SMEs, through a low-code interface, have several ways to dictate the feature
engineering process. First, subject matter experts can construct a feature engineer-
ing pipeline for signal data simply by specifying a sequence of data transformations
and aggregations (building blocks); SigPro then automatically composes a primi-
tive graph and thus a feature engineering pipeline. Second, subject matter experts
can also specify parameters and hyperparameters for each building block through
SigPro’s user-friendly API. These methods encourage SMEs to incorporate their do-
main knowledge through informative feature transformations and carefully chosen
parameter values.

When existing building blocks fall short, SigPro facilitates efficient development
of new primitives. To this end, we streamline the process for the contribution of new
primitives while ensuring their seamless integration into existing pipelines. These
improvements ensure that SigPro provides an intuitive yet effective solution where
subject matter experts can leverage their domain knowledge to generate relevant, ex-
planatory features that can greatly improve the performance of downstream predictive
modeling.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist
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Chapter 1

Introduction

The demand for data-driven decision making has increased in recent years, and with

it, the need to develop reliable machine learning (ML) models. In particular, feature

engineering – the process of identifying, processing, and extracting informative fea-

tures from raw data – is an important aspect of modeling that has gained increased

importance in machine learning and data science recently. After all, it is rare for

data to arrive precisely in the ideal input format for a ML model. Achieving success

in any ML task requires engineering features that can delve into the important as-

pects of the data itself while simultaneously accounting for any unique characteristics

of downstream learning algorithms [12]. This is especially true when working with

raw signal datasets, which often demand time-domain, frequency-domain, and even

frequency-time domain transformations to extract useful information from them.

Meanwhile, automated machine learning (AutoML) frameworks have arisen as an

approach to traditional machine learning workflows by automating many otherwise

labor-intensive tasks in model development [10]. Thus, AutoML approaches reduce

the need for challenging, time-consuming, and ad hoc human design. In doing so, they

can enable wider access to efficient, scalable, and high-performing models even to users

with minimal machine learning experience. When full automation is not desired,

Subject Matter Experts (SMEs) can often tailor AutoML approaches to fit their

specific domain needs, striking a balance between convenience and customizability.

In this thesis, we focus on feature engineering: specifically, engineering and ex-
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tracting features from raw signal data. First, we give an introduction to signal data

in Section 1.1 and their unique properties. In Section 1.2, we examine tools for au-

tomating feature engineering, as well as the importance of subject matter expert input

within this process. We summarize the objectives of our work in Section 1.3 and lay

out the rest of the thesis in Section 1.4.

1.1 Introduction to Signal Data

Given the extent of work related to feature engineering with time series [2, 7, 10], it

is useful to draw a distinction between signal data and time series data. Time series

data, as colloquially referred to in the research community, is typically collected at a

regular frequency with a single clean observation at each time step (e.g. stock market

data). This data is often aperiodic and information-rich.

On the other hand, signal data is gathered at regular or irregular intervals, usually

from sensors. In a typical application, each sensor can collect samples quite rapidly

(106 samples per second) and assign a series of these readings to a single timestamp.

Importantly, signal data is often data-rich but information-poor [3], so multiple signals

must often be combined to capture all available information.

Both signal and time series data arrive as a series of time-stamped observations and

typically require sequence transformations to generate high-quality features. Nonethe-

less, the idiosyncrasies of real-world signal data compared to regular time-series mean

that additional domain-specific knowledge is essential to extract information from

them.

A real-world example of the kind of signal data we would like to process is the
converter failure dataset studied by Hartwell [9]. Among other information,
the converter failure dataset contains over twenty million rows of timestamped
plant information (PI) signal data. Each row contains numerical information
on various wind turbine variables and signals, such as active power, current,
and voltage [9]. This PI data can be queried/sampled at regular intervals, as
with time series, but ultimately must be transformed with signal processing
methods (such as a discrete Fourier Transform) and aggregated before it can
be incorporated into a larger converter failure prediction model. The choice
of which specific signal processing methods to apply is greatly influenced by
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domain knowledge and highlights the difference between signal and time series
data in general.

1.2 Feature Engineering

Currently, there are several main approaches employed by practitioners that represent

three sub-problems within feature engineering: feature selection, feature extraction,

and feature construction [10]. Feature selection works with an existing feature set

by removing redundant features and preserving relevant ones, typically employing a

search strategy among feature subsets (e.g. forward selection [6]); on the other hand,

feature construction is far more dependent on human expertise within the relevant

domain[10]. In the case of feature extraction and construction, or feature transforma-

tion, a typical approach has been to transform the raw feature set to produce robust,

informative, and generalizable features for use in downstream modeling; such trans-

formations can be predefined or manually customized. As early as 2002, Motoda and

Liu suggested applying various operators to existing features to produce modified and

compound features [14], and many subsequent libraries have extended this principle

to contribute their own feature construction paradigms [10].

Term Definition
Feature engineering Producing, transforming, and selecting features from the raw data.
Feature selection Removing irrelevant or redundant features from the data.
Feature transformation Building new features by carefully transforming the existing features.
Feature extraction Executing programs to compute features from data
Feature construction Writing programs that when applied to data can extract features.

Table 1.1: Definitions of important terms related to feature engineering.

We summarize the definition of these terms in Table 1.1. Again, we observe

that feature extraction and feature construction are both encompassed by feature

transformation, which is in turn an important aspect of feature engineering.
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Figure 1-1: A schematic comparison of feature engineering (with feature construction
and extraction), feature transformation, and feature selection applied to data.
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1.2.1 Automation for Feature Engineering

Several libraries have aimed to automate feature engineering. Featuretools, devel-

oped in 2015 by Kanter and Veeramacheneni,1 is a Python library which automatically

extracts features from temporal relational data [4, 11]. In their original work, Kanter

and Veeramachaneni directly attempt to tackle the need for human-intuition in the

feature-engineering stage with the Deep Feature Synthesis (DFS) algorithm as part

of an end-to end Data Science Machine, with a goal to match or exceed human-level

performance in data science competitions.

The core data structure of Featuretools is the EntitySet, which represents a

collection of dataframes and their relationships. The DFS algorithm extracts three

types of features – entity features, direct features, and relational features – using entity

and relational function primitives2 [11]. To generate each feature, several transfor-

mation and aggregation primitives are automatically stacked as dictated by the DFS

algorithm, taking into account the relational nature of the data; the user can also

manually provide seed features to encode domain knowledge into the input of deep

feature synthesis. While the DFS algorithm itself and many of the Featuretools

operations hinge on the relational structure of the intended dataset, the choice to

engineer features with a sequence of basic operations is quite relevant to SigPro

itself.

Other Python libraries of note include TSFresh,3 developed in 2018. TSFresh

aims to extract features from numerical time series, and is therefore naturally ap-

plicable to many signal-processing contexts. TSFresh is user-configurable to select

varying numbers of features, and as of the latest version, provides several dozen fea-

ture calculations within the tsfresh.feature_extraction.feature_calculators

submodule to produce over 1200 distinct total features [7]. These calculators span a

variety of statistical, autoregressive, informational, and even spectral operations. We

observe that TSFresh generates its features in a parameter-delineated (not modular)

1https://www.featuretools.com/
2Primitives are reusable software components. We elaborate further on primitives in Chapter 2.
3https://github.com/blue-yonder/tsfresh/
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fashion, and explicitly selects features from among them via an additional statistical

hypothesis test.

Similarly to TSFresh, ExploreKit,4 developed in 2016 by Katz, Shin, and Song, is

a feature engineering toolkit that also incorporates feature selection [12]. ExploreKit

develops a modular framework in Java that applies a set of unary operations on

single features and higher-order operations combining multiple features to generate a

candidate feature set. As with TSFresh, ExploreKit selects features statistically, but

it goes a step further in explicitly comparing performance of models augmented with

candidate features to perform its feature ranking [12].

SigPro, as we will see later, is designed to combine automated feature extraction

with subject matter expert input, and none of the aforementioned libraries directly

address the use case we hope to tackle in this thesis.

1.2.2 The Need for Input from Subject Matter Experts

A common AutoML approach to low-code feature engineering is to automatically ex-

tract a large number of features from the data and to then perform feature selection

to produce the final feature set. While such methods can produce acceptable results,

they suffer from several problems. First, the amount of dimensionality reduction

needed is generally quite drastic due to the sheer quantity of irrelevant and redun-

dant features generated. This results in a significant amount of wasted computation.

Secondly, the selected feature set often suffers from low interpretability, limiting the

ability of subject matter experts to contribute domain-specific information. There-

fore, it is essential to understand the needs of subject matter experts in a feature

engineering context.

Most critically, SMEs seek to guide or dictate the feature engineering process by

incorporating their domain knowledge. There are several key methods by which SMEs

can do so:

(M1) Specify parameter values. At the simplest level, a subject matter expert

4https://github.com/giladkatz/ExploreKit
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would like to input their knowledge of reasonable parameter ranges by tuning

individual parameters (e.g. choosing an energy band for an aggregation).

(M2) Select useful operations. More broadly, subject matter experts are more

likely to know which feature transformations are most likely to produce relevant

feature outputs, and which transformations do not make intuitive sense based

on the nature of the data. For example, a SME familiar with a sensor dataset

will know whether or not to apply a frequency-domain transformation such as

FFT to the signal values.

(M3) Dictate combinations of operations. Typical features are often the result

of applying multiple feature transformations and aggregations in sequence to

the raw data (e.g. the mean value of a frequency spectrum). A subject mat-

ter expert can leverage their knowledge to focus on only the most promising

combinations and pass this information, implicitly or explicitly, to the feature

generator.

(M4) Contribute custom operations. Lastly, subject matter experts are well

suited to identifying the gaps in existing feature transformations and writing

their own operations as needed. Some custom operations, such as the BandMean

aggregation, are initially written by SMEs but are used widely enough to justify

their inclusion in feature engineering libraries.

None of these approaches should require the user to have extensive software engi-

neering experience.

As multiple case studies indicate [9, 13], domain knowledge remains an invaluable

input to machine learning systems. Ultimately, an ideal library should enable all

avenues of SME contributions within the feature engineering process with a high

level, low code interface.
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1.3 Goals of SigPro

The goal of SigPro is to empower SMEs in signal processing to effectively apply their

expertise for feature engineering with an intuitive, flexible interface. SigPro enables

broad customization of feature engineering pipelines and encourages open-source con-

tributions to maintain its greater relevance and utility to the signal processing com-

munity.

1.4 Thesis Organization

In the rest of this thesis, we will present the SigPro library and highlight contributions

to the primitive and pipeline interfaces. We begin in Chapter 2 with some discussion

and related progress in signal and automated feature engineering. In Chapter 3, we

examine the SigPro framework itself and its structure. We investigate real-world

usage and applications of SigPro in Chapter 4. Finally, we review our design choices

in Chapter 5 and conclude in Chapter 6 by summarizing work on the project thus far

and detailing potential updates in the future.
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Chapter 2

User-Driven Feature Engineering

In this chapter, we review important prior work that has motivated the design and

construction of our library. Our focus is on libraries that promote user-driven feature

engineering processes.

2.1 Related Work

One of the most widely used general-purpose machine learning libraries in use is

scikit-learn
1 (also known as sklearn), which provides a variety of machine learn-

ing algorithms built on the numpy and scipy libraries [15]. These algorithms span

data pre-processing through model fitting and evaluation, including a feature extrac-

tion module applicable to image and text datasets. In general, sklearn objects are

designed to implement a consistent interface depending on their functionality, which

allows them to be compatible with both other internal classes as well as external

libraries. For example, ‘transforms’ in sklearn implement the ‘fit’ and ‘transform’

methods, which allows them to be passed in to create sklearn.pipeline.Pipeline

instances. Therefore, sklearn enables users to chain together a variety of transform

objects to comprise a single end-to-end pipeline for the application at hand.

Another option for feature-engineering with a greater focus on time series data is

1https://scikit-learn.org/stable/
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TSFEL,2 proposed in 2020 by Barandas et al [2]. TSFEL focuses on fast exploratory

data analysis and feature extraction and offers over 60 features across statistical,

temporal, and spectral domains, each with its own JSON annotation, that can be

extracted from a particular signal. Uniquely, TSFEL also provides an online interface

in addition to a conventional Python package. While the overall TSFEL pipeline is

relatively fixed in structure, the specific choice of features to be extracted can be

customized by the user. When default feature functions are insufficient, TSFEL also

enables writing custom features and corresponding annotations.

featuretools tsfresh ExploreKit sklearn TSFEL SigPro
User-driven engineering 7 7 7 3 3 3

Signal data support 3 3 7 7 3 3

Library of primitives 3 3 3 3 3 3

Custom primitives 3 3 7 3 3 3

Intuitive primitive design 3 3 3 7 3 3

Custom pipelines 3 7 7 3 7 3

Nonlinear pipelines 7 7 7 7 7 3

Table 2.1: Comparison of feature engineering library functionalities.3A 3 denotes
support of the corresponding functionality, while a 7 indicates that the corresponding
functionality is not supported.

In Table 2.1, we summarize several relevant functionalities of the libraries we have

examined thus far compared to SigPro. While all examined frameworks provide a

library of primitive operations to transform raw data, they differ in their intended

usage scenarios, pipeline customizability, and simplicity of use.

2https://github.com/fraunhoferportugal/tsfel
3User-driven engineering indicates whether the feature engineering process is dictated primarily

by the user or not. Signal data support describes the extent of common signal processing operations
(e.g. discrete Fourier transform) usable with each library. Primitives denote reusable software
components which perform a single operation; some libraries provide a library of primitives for the
user, and certain libraries also enable the user to write custom primitives, ideally with an intuitive
primitive design. To perform a task, the user combines various primitives in some manner to form
a pipeline. Some libraries explicitly support the creation of user-specified custom pipelines, and
a subset allow these pipelines to combine primitives in either a linear (explicitly sequential) or
nonlinear pattern.
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2.2 The Machine Learning Bazaar

In addition to serving as a standalone toolkit for signal feature engineering, SigPro

also represents the latest iteration in a series of developments towards a comprehensive

software ecosystem for developing robust end-to-end machine learning applications.

2.2.1 Primitive-Pipeline Design

An important pair of concepts introduced by Smith, Sala, Kanter, and Veeramacha-

neni (2019) are the primitive and the pipeline. Observing inefficiencies in the tradi-

tional ML development process, Smith et al. envisioned the MLBazaar to ease the

practical construction of ML systems [18]. For our purposes, a primitive is simply

a reusable software component that processes data input with some operation and

returns an output [1]. Meanwhile, a pipeline refers to an end-to-end program com-

prised by primitives. In the context of general end-to-end machine learning tasks,

primitives could handle operations ranging from data cleaning and pre-processing to

model fitting and prediction [18]; any specific combination of primitives to perform

the task could comprise a pipeline.

The primitive-pipeline design pattern has several advantages. Users can freely

combine, reuse, and replace primitives without repeatedly integrating third-party

tools or writing extensive glue code [18]. Meanwhile, pipelines provide a concise, flex-

ible approach to defining reusable workflows that do not need to be rewritten when

any individual component is revised. The result is a code-efficient framework that im-

proves transparency, lowers error potential, and encourages constructive development

practices with thorough unit testing and documentation [1].

2.2.2 MLBlocks

First developed in 2015 by Bryan Collazo and extended in 2018 by William Xue,

MLBlocks
4 provides a framework for constructing end-to-end tunable machine learn-

ing pipelines to tackle a variety of data science problems [8, 19]. As first conceived by
4https://mlbazaar.github.io/MLBlocks/
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Collazo, MLBlocks was a software system to allow data scientists to combine reusable

software modules, or blocks, into end-to-end high level techniques (e.g. discriminative

or generative modeling). After extracting, interpreting, and aggregating the data –

the feature engineering users would have four possible ‘lines’ to follow, each corre-

sponding to a single machine learning technique supported by the library.

Xue reintroduces MLBlocks as a lightweight Python library to integrate various

other machine learning libraries with an intuitive interface. Machine learning in

MLBlocks relies on the basic MLBlock class, which provides an abstraction for a single

data science primitive, and the MLPipeline class, which allows users to simply tie

together MLBlocks to form a machine learning pipeline. The MLBlock class seamlessly

integrates third-party libraries and user-written functions, while the MLPipeline class

serves as the main user interface for the libary [19].

Just as in sklearn, a successful MLPipeline requires only that its consituent

primitives implement a similar inferface. The user then interacts with the pipeline

by applying either its fit method or predict method to iteratively apply either

the fit or produce methods, respectively, of its MLBlock steps. For example, if

each MLBlock step applies a single feature transformation of an input data series as

its produce method, the predict method of the resulting MLPipeline will extract

one or more iteratively transformed features as its output. Therefore, the modern

MLBlocks framework can be used to perform feature engineering as well.

2.3 Sintel

SigPro and several other libraries together comprise the Signal Intelligence project, or

Sintel,5 an open-source, end-to-end framework for performing time series tasks such

as Anomaly Detection (AD) [1]. In the AD case, by following the aforementioned

primitive-pipeline approach, Sintel decomposes the task into three modules: pre-

processing, modeling, and post-processing. As a feature engineering library, SigPro

naturally integrates with the first phase of the process.

5https://github.com/sintel-dev/
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As before, splitting the AD task allows for the re-use of primitives across pipelines

and integrating new primitives without entirely reworking the pipeline itself. Sintel

provides default pipeline implementations for several state-of-the-art AD methods,

including LSTM and ARIMA approaches. For other tasks, users leverage the cus-

tomizability of Sintel pipelines to substitute or compose bespoke workflows at will.
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Chapter 3

SigPro

In this chapter, we will express the purpose of the SigPro library and discuss the role

of primitives and pipelines.

3.1 Goals

SigPro is a feature generation library intended to facilitate SME feature engineering

for signal datasets. The goal of SigPro is to enable SMEs to leverage their domain

knowledge in order to engineer their own feature pipelines from signal data, without

the need for extensive understanding of deep feature extraction methods or machine

learning development in general.

3.1.1 What SigPro Is

As we observed in Section 1.2.2, SMEs have a variety of avenues through which they

can impute their domain knowledge. Therefore, SigPro is intended to:

• Streamline open-source development of feature engineering pipelines.

SigPro provides a pre-built library of transformations and aggregations that

are composed into pipelines to ensure that first-time usage remains rapid and

intuitive even for users with less machine learning engineering experience. In

particular, SigPro should be easy to develop with for domain experts, and its
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code should be easy to understand for potential contributors of new primitives.

• Enable customization of specific primitives and pipeline structures.

In certain cases, the specific use scenarios of SMEs do not coincide perfectly

with the available functionality in SigPro. Therefore, SigPro makes it easy

to express custom signal operations and sequences as primitives and pipelines,

respectively. Ideally, SigPro’s interface will also be familiar to expert users to

facilitate community usage and contribution.

• Provide flexibility in case of changing requirements. User requirements

are not always static and in many situations the user will need to modify a pre-

existing pipeline. Thus, SigPro supports modifying and composing primitives

and/or pipelines without creating a new object from scratch.

3.1.2 What Sigpro Isn’t

In contrast, SigPro is not intended to:

• Perform data cleaning or formatting. SigPro expects signal data to arrive

in a certain format, and it is the responsibility of the user to collect and sanitize

raw data into this form.

• Eliminate the need for human involvement. Our goal is not to provide

a black-box catch-all automated feature extractor. While SigPro facilitates

and automates some aspects of feature engineering development, it does not

substitute for human intuition and domain expertise.

In short, the domain expert should be leveraging SigPro to dictate the generation

of features, not vice versa. That said, SMEs can certainly use SigPro to guide the de-

velopment of their own feature engineering pipelines, potentially through exploratory

data analysis. Future iterations of SigPro could also provide supplementary informa-

tion (e.g. statistical feature summaries) that can be taken into account by the SME

using the library.
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3.2 Library Overview

In SigPro, just as with MLBlocks [19], the user engineers features by composing

individual transformations and aggregation primitives to create a pipeline. These

primitives can originate from either SigPro’s built-in library or can be written and

customized by the user, and are designed to be compatible with MLBlocks-style JSON

specifications. We will delve further into SigPro primitives, their taxonomy, and their

interface starting in Section 3.3.

Pipelines themselves can be built using several basic structures: linear pipelines

(Section 3.6.1), tree pipelines (Section 3.6.2), and layered pipelines (Section 3.6.3).

Each pipeline has its own unique associated structure, resulting in different sets of

output features.

SME Need Feature Sections

M1 Specify parameter values Primitive class
3.4.1
3.4.2

M2 Select useful operations

Primitive Taxonomy
Primitive class
Pipelines

3.3.1
3.4
3.6

M3 Dictate combinations of operations

Linear Pipelines
Tree Pipelines
Layer Pipelines
Building Pipelines

3.6.1
3.6.2
3.6.3
3.7

M4 Contribute custom operations
Primitive Contribution
Dynamic Class Creation

3.5
3.5.1

Table 3.1: Addressing the needs of subject matter experts in SigPro to tune param-
eter values (M1), select useful primitives (M2), specify combinations of primitives
(M3), and contribute custom primitives when required (M4).

3.3 Introduction to Primitives

In Section 2.2, we defined the notion of primitives and pipelines. Because they enable

highly customizable and flexible workflows, primitives and pipelines are critical to the
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design of SigPro. Therefore, we devote the rest of the chapter to SigPro’s realization

of the primitive-pipeline concept and its relevance to our library goals.

Primitives comprise the modular building blocks of SigPro. In SigPro, primitives

consist of a primitive function, primitive object, and associated JSON annotation.

Most primitive functions transform an input signal time series into an output feature

time series or scalar value and possibly a few additional outputs. We delve further

into specific input and output formats later in this chapter. Similarly to MLBlocks,

information about individual primitives is stored in corresponding JSON annotations,

which standardize input and output formats to reduce glue code for the user. Finally,

the primitive object cleanly encompasses the primitive function and JSON annotation

and represents the primary user interface for the primitive.

3.3.1 Primitive Taxonomy

From a user perspective, SigPro offers two basic types of primitives for use: trans-

formations and aggregations (M2). Each type of primitives is further broken into

several primitive subtypes, including amplitude, frequency, and frequency-time primi-

tives. Built-in primitive JSON annotations are individually stored according to their

(primitive_type, primitive_subtype) attributes into the appropriate subfolders.

Transformations

A transformation primitive takes as input a series of signal values, along with some

optional hyperparameters, and outputs a new series containing an alternative rep-

resentation of the original data. SigPro transformations can be broken into several

categories:

1. Amplitude transformations accept as input a 1-dimensional numpy.ndarray of

amplitude values amplitude_values and return a single 1-dimensional ndarray

of amplitude_values as output. An example of an amplitude transformation

is the Identity primitive, which simply outputs the input amplitude values

as-is.
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2. Frequency transformations accept a 1-dimensional ndarray of time series val-

ues amplitude_values and a sampling frequency sampling_frequency as in-

puts, and performs a frequency based transformation to the input series. These

transformations will output two 1-dimensional ndarrays: amplitude_values,

containing frequency amplitudes, and frequency_values, containing the cor-

responding frequencies. An example of a frequency transformation is the FFT

primitive, which computes and returns the discrete Fourier Transform and as-

sociated frequency values.

3. Frequency-time transformations take the same inputs as frequency transfor-

mations and return a 2-dimensional ndarray representation amplitude_values

of the input signal, along with the corresponding 1-dimensional frequency_values

and time_values. The STFT transformation, which computes the short-time

Fourier Transform, is one such primitive.

SigPro transformation primitives are collectively represented by the Transformat-

ionPrimitive class, which inherits from Primitive. Furthermore, amplitude trans-

formations, frequency transformations, and frequency-time transformations are rep-

resented by the subclasses AmplitudeTransformation, FrequencyTranformation,

and FrequencyTimeTransformation, respectively.

Aggregations

An aggregation primitive takes as input a series of signal values (or other series), along

with some optional hyperparameters, and outputs one or several scalar values which

summarize the data. SigPro aggregations can be broken into several categories as

well:

1. Statistical aggregations accept a ndarray of signal values amplitude_values

as input and apply a statistical function to return an output. We refer to these

primitives as amplitude aggregations, as they do not work with accompanying

frequency values. Two examples of statistical (amplitude) aggregations are the
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Mean and Var aggregations, which respectively compute the mean and variance

of the input data.

2. Spectral aggregations accept as input two ndarrays, amplitude_values and

frequency_values, for more domain-specific feature generation, and return a

scalar output. We refer to such primitives as frequency aggregations to con-

trast them with amplitude aggregations. For instance, the BandMean primitive

computes the mean of the input amplitude values lying within a user-specified

frequency interval, and therefore serves as an example of a spectral (frequency)

aggregation.

3. Frequency-Time aggregations accept three ndarrays as input – amplitude_

values, frequency_values, and time_values – and return a scalar output.

Currently, SigPro does not provide any such frequency-time aggregations by

default, though the user can freely implement their own such primitives as their

use case demands.

4. Comparative aggregations accept as input both amplitude_values and refer-

ence_values, and produce a scalar output representing some comparison be-

tween the transformed signal and reference ndarrays. An example would be a

correlation primitive that computes the Pearson correlation between the signal

values and a set of reference values. These primitives can also be expressed

as amplitude aggregations with the reference values as context arguments to

the primitive, so we do not explicitly group them within a separate subclass of

AggregationPrimitive.

Similarly to transformations, SigPro aggregations are collectively implemented

under the AggregationPrimitive class. Paralleling the transformation nomencla-

ture, we represent statistical (and comparative), spectral, and frequency-time ag-

gregations by the subclasses AmplitudeAggregation, FrequencyAggregation, and

FrequencyTimeAggregation, respectively.
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3.4 Primitive Implementation

As noted previously, all transformations and aggregations inherit from the Primitive

base class, which represents a generic SigPro primitive. Built-in transformation and

aggregation primitives are implemented under a class-subclass hierarchy based on

their subtypes, and users are encouraged to implement their own custom primitives

under this system as well.

3.4.1 The Primitive Class

The Primitive class serves as the foundation for all primitives, built-in and user-

defined, in SigPro. A Primitive can be initialized by passing in the extended primi-

tive name primitive, which indicates the location of the primitive function itself, as

well as the primitive_type and primitive_subtype; optionally, the user can spec-

ify hyperparameter values in dictionary format through the init_params parameter

(M1). While the initialization syntax of basic primitive objects is slightly involved,

we do not expect most users to initialize or subclass from Primitive directly. Rather,

users can inherit from the subclass that most directly corresponds to the primitive

type and subtype of their desired primitive.

In addition to initialization, users can apply several getters and setters to ac-

cess and modify important attributes of each Primitive. Notably, we enable users

to set and access primitive tags, which allow users to name primitive objects in-

telligibly and uniquely (in the case of multiple instances of a particular primitive),

and fetch the hyperparameter dictionary. Both of these methods are used inter-

nally to interface with SigPro pipelines. Finally, we provide make_primitive_json

and write_primitive_json instance methods to enable users to easily create and

store JSON annotations compatible with the MLBlock API. While JSON annota-

tions have already been provided for built-in primitives, these methods are useful

for quickly contributing and using custom primitives without writing a JSON an-

notation by hand. We save a more careful presentation of make_primitive_json,

write_primitive_json, and the primitive contribution process for Section 3.5. The
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full public interface is given in Table A.1.

It is worth noting that unlike the analagous MLBlock class in MLBlocks, SigPro

Primitives include their hyperparameter values within their representation. This

allows us to avoid having to separately pass in (fixed) hyperparameter values into our

feature engineering pipelines and yields a simpler, more intuitive interface for the end

user (M1).

Primitive Attributes

For the sake of clarity, we explicitly enumerate the attributes of Primitive that are

relevant to producing the JSON annotations, and by extension, the usage of primitives

in pipelines.

• primitive (str): The fully qualified str name for the primitive function (e.g.

"sigpro.transformations.frequency_time.stft.stft").

• tag (str): The user-given ‘tag’ to a primitive.

• primitive_type (str): The type of a primitive.

• primitive_subtype (str): The subtype of a primitive.

• fixed_hyperparameters (dict): The dictionary of (fixed) hyperparameter

names and their types.

• context_arguments (list): The list of context arguments expected by the

primitive.

We note a distinction between a (fixed) hyperparameter and a context argument,

which both appear as additional arguments in the function header underlying the

primitive. The former is a ‘fundamental’ characteristic of the transformation or ag-

gregation itself, and therefore should be specified upon initialization. In contrast, a

context argument is not fundamental to the primitive and is passed in at run-time by

the input data.
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Primitive

TransformationPrimitive

Primitive Type Primitive Subtype Primitive Class

FrequencyTransformation

FrequencyTimeTransformation

AmplitudeTransformation

FFT

Identity

AggregationPrimitive

FrequencyAggregation

FrequencyTimeAggregation

AmplitudeAggregation

BandMean

Mean

Figure 3-1: Inheritance relationships of Primitive subclasses with selected primi-
tives. Primitive are broken in two primitive type classes and six primitive subtype
classes, which in turn serve as direct superclasses for specific primtiives.

3.4.2 Subclasses of Primitive

Recall from Section 3.3.1 that the subclass structure under Primitive mirrors the var-

ious types and subtypes of primitives that can be written in SigPro. Transformation

and aggregation primitives are represented by the TransformationPrimitive and

AggregationPrimitive types, and each of these types is further subclassed into vari-

ous subtype classes, such as AmplitudeAggregation and FrequencyTimeTransformation.

Finally, specific primitives, such as FFT and Mean, inherit from the proper superclass

based on their corresponding type and subtype (Figure 3-1). A full enumeration of

available SigPro primitive classes is provided in Table B.1.

While the interfaces for all type and subtype classes are similar, the initializa-

tion interface of specific primitives can be significantly simplified (Figure 3-2). In-

deed, many built-in primitives can be instantiating without specifying any parameters

whatsoever. In other cases, where the specific transformation or aggregation to be

applied is controlled by at least one hyperparameter input, the user initializes the

primitive by passing in hyperparameter values (M1) as keyword arguments (e.g.

BandMean(10,30)). This creation syntax mirrors other machine learning libraries

such as Keras and increases the readability of the pipeline code as a whole.

35



1 from sigpro.basic_primitives import (

2 Identity, FFT, FFTReal, Mean, Kurtosis)

3

4 identity_tfm = Identity().set_tag('id')

5 fft_tfm, fft_real_tfm = FFT(), FFTReal()

6 mean_agg, kurtosis_agg = Mean(), Kurtosis(bias=False)

Figure 3-2: Initializing and tagging primitives with SigPro. The identity_tfm prim-
itive is given the alternative tag ’id’, while the kurtosis_agg primitive is initialized
with its bias parameter set to False.

3.5 Contributing Primitives

An important aspect of SigPro is the ability to efficiently define custom primitives

and seamlessly integrate them into pipelines (M4). To contribute and use a custom

primitive, say, UserPrimitive, the user undergoes the following steps.

1. The user writes the primitive function userprimitive(amplitude_values,

**kwargs) itself. This function can be a wrapper around an existing (third-

party) library function, or it can be a custom transformation or aggregation.

2. The user identifies the proper primitive type and subtype that most commonly

match the inputs and outputs of the written function, and stores the function

within the appropriate SigPro folder according to the aforementioned taxon-

omy.

3. The user then creates a new subclass that inherits from the appropriate Primitive

subclass and populates the __init__ method, including any necessary inputs

to init_params (e.g. hyperparameters) as additional arguments (M1). Alter-

natively, the user can call the make_primitive_class method to dynamically

generate a primitive class that can be used in pipelines.

4. For aggregation primitives, the user should call Primitive.set_primitive_outputs

(self, primitive_outputs) to name the output of the primitive accordingly

(e.g. mean_value for a Mean primitive). This step is not necessary if the user

has already customized the output names with make_primitive_class.
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5. Finally, the user instantiates their primitive with the UserPrimitive(**kwargs)

syntax, where kwargs contains any hyperparameter values passed into the primi-

tive as keyword arguments. If the user has not done so already, they should com-

pute and record the primitive JSON annotation by calling write_primitive_json.

In Figures 3-3 and 3-4, we detail the contribution and initiation process as it would

apply to writing a typical amplitude aggregation.

Recall that primitives with hyperparameters are instantiated by passing in the

hyperparameters as (keyword) arguments themselves. One alternative design for the

instantiation interface would be to allow or require the user to directly pass in hyper-

parameter names in an init_params dictionary. While we allow the user to export

the hyperparameter values in dictionary format, in case the user would like to store

or use such hyperparameters as part of a larger pipeline, we choose not to encour-

age such initialization for typical primitives in SigPro with few hyperparameters for

readability reasons. If the number of hyperparameters is high and direct keyword

initiation is less feasible, we nevertheless encourage the user to accept inputs with the

**kwargs format and unpack any input dictionaries with **init_params.

Additionally, in calling our superclass constructor (itself subclassed from Primitive)

within Main.__init__, we did not pass in the primitive outputs directly. Rather, we

explicitly set the primitive outputs with a separate setter method. If we had needed

to specify hyperparameters, we would have called the set_fixed_hyperparameters

method on a subsequent line. Why not attempt to pass in these outputs and hy-

perparameters to the AmplitudeAggregation constructor itself, possibly as optional

arguments? Unfortunately, what small improvements this design achieves in brevity

of code are outweighed by setbacks in the ease of using the constructor in the first

place. In short, we adopt a use-as-needed paradigm. Very few primitives in the

SigPro library would use many or all of the optional arguments thus provided, at

the cost of requiring users to familiarize themselves with a litany of additional initial-

ization parameters in __init__. Explicitly denominating most of these arguments

as steps in primitive initialization rather than additional inputs to the initialization

itself relieves this burden on our end users and enables them to add complexity to
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1 from sigpro import primitive

2 # Steps 1-2

3 def mean(amplitude_values): # in sigpro.aggregations.amplitude.statistical.py

4 return np.mean(amplitude_values) # i/o matches AmplitudeAggregation

5 # Step 3

6 class Mean(primitive.AmplitudeAggregation):

7 def __init__(self):

8 super().__init__("sigpro.aggregations.amplitude.statistical.mean")

9 # Step 4

10 self.set_primitive_outputs([{"name": "mean_value", "type": "float" }])

11 # Step 5

12 myprimitive = Mean()

13 myprimitive.write_primitive_json()

Figure 3-3: Writing the Mean aggregation and recording its JSON annotation.

1 myprimitive = Mean()

2 print(myprimititve.make_primitive_json())

# Output:

{ "name": "sigpro.aggregations.amplitude.statistical.mean",

"primitive": "sigpro.aggregations.amplitude.statistical.mean",

"classifiers": {

"type": "aggregation",

"subtype": "amplitude"

},

"produce": {

"args": [

{

"name": "amplitude_values",

"type": "numpy.ndarray"

}

],

"output": [

{

"name": "mean_value",

"type": "float"

}

]

}}

Figure 3-4: Previewing the JSON annotation of the Mean primitive.
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1 from sigpro.basic_primitives import Mean

2 from sigpro.contributing_primitive import get_primitive_class

3

4 def mean(amplitude_values): # in sigpro.aggregations.amplitude.statistical.py

5 return np.mean(amplitude_values)

6

7 mean_primitive = "sigpro.aggregations.amplitude.statistical.mean"

8 mean_outputs = [{'name': 'mean_value', 'type': 'float'}]

9 MeanDynamic = get_primitive_class(mean_primitive,

10 'aggregation',

11 'amplitude',

12 primitive_outputs=mean_outputs)

13

14 mean_dynamic, mean_subclass = MeanDynamic(), Mean()

15 print(mean_dynamic.make_primitive_json() == mean_subclass.make_primitive_json())

16

17 # Output

18 # True

Figure 3-5: Dynamically generating the Mean primitive with get_primitive_class.
While we still need to write the function body, we no longer need to write a class def-
inition. The resulting dynamic primitive class is functionally identical to the explicit
subclass implementation.

their primitives only as required.

3.5.1 Dynamic Primitive Class Creation

While we intentionally avoid methods with many input arguments, we recognize that

some users are more comfortable with imperative programming than object-oriented

programming. Thus, we provide the get_primitive_class method to return a dy-

namically generated primitive class with the same functionality as a correspondingly

written subclass implementation; the make_primitive_class method is similar but

also records the JSON annotation (M4). Figure 3-5 shows an example of dynamic

class creation with this method.
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3.6 Pipelines

While primitives can be quite useful on their own, the true power of SigPro arises in

the development of a feature engineering pipeline. Here, SMEs are able to leverage

their domain knowledge to construct bespoke feature generation pipelines specific to

their individual use cases (M3).

In SigPro, pipelines denote a set of primitive operations that are combined and/or

composed in some form to transform an input time series into one or more output

feature values. Because transformation primitives generally map signal time series

to signal time series, while aggregations generally map time series to scalar values,

output features of effective SigPro pipelines will generally result from a series of

transformations followed by an output of an aggregation primitive.

fft fft.frequency_band fft.frequency_band.mean_valueValues
FFT() FrequencyBand (100, 150) Mean()

Figure 3-6: An example feature produced by applying the FFT and FrequencyBand

transformations, followed by the Mean aggregation, to the input array values.

For the rest of this section, we will discuss several pipeline structures (M3). In

order of generality, these structures are linear pipelines, tree pipelines, and layer

pipelines. The diversity of available structures mean that the same list of primitives

can be combined to extract many different feature outputs.

3.6.1 Linear Pipelines

The most basic form of a SigPro pipeline is the linear pipeline. A linear pipeline

can be specified by an ordered list of transformation primitives T1, T2, . . . , Tn and

a (potentially unordered) list of aggregation primitives A1, A2, . . . , Am (M2). To

extract output features, the pipeline applies transformations T1, T2, . . . , Tn in order

to obtain a transformed time series, and then applies aggregations A1, A2, . . . , Am

to obtain several aggregated features from this time series; since the aggregations

are all applied to the same transformed time series, the order in which we apply

the aggregations is immaterial. The result of this process is a set of m output fea-
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tures T1.T2. · · ·Tn.A1, T1.T2. · · ·Tn.A2, . . . , T1.T2. · · ·Tn.Am. We summarize this fea-

ture transformation architecture in Figure 3-7.

Transform N

Aggregate 1

Aggregate 2

Aggregate M

Transform 2 ...

...

Transform 1Signal

Figure 3-7: Basic (linear) transformation architecture. Each box represents a single
(intermediate) output.

3.6.2 Tree Pipelines

Linear SME-curated transformation series are important to SigPro, and linear pipelines

are able to generate a wide variety of features. However, there are certainly situations

in which subject matter experts would like to generate multiple features at once, us-

ing multiple transformation sequences (M3). Thus, we also enable more variegated

feature generation via tree pipelines.

Tree pipelines are characterized by several layers ordered L1, L2, · · · , Li, · · · , Lk,

each containing a list of transformation primitives, and an aggregation layer contain-

ing primitives A = A1, A2, · · · , Am (M2). Suppose that for each 1  i  k that layer

i consists of transformation primitives T i
1, T

i
2, · · · , T i

ni
. Then for each valid tuple of

indices (t1, t2, t3, . . . , tk, a) with 1  ti  ni, 1  a  m, the tree pipeline outputs

a feature corresponding to T t1
1 .T t2

2 . · · ·T tk
k .Aa. Ultimately, the tree pipeline gener-

ates m
Qk

i=1 ni distinct features from the Cartesian product of all primitive layers

(Figure 3-8).

Note that when each transformation layer Li has a single (ni = 1) transformation,

the resulting tree pipeline is equivalent to a linear pipeline. Thus, the tree pipeline is

a strict generalization of linear pipelines.
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Aggregate 1

Aggregate 2

Aggregate 1

Aggregate 2

Aggregate 1

Aggregate 2

Aggregate 1

Aggregate 2

Transform B1

Transform B2

Transform A2

Transform A1

Transform B1

Transform B2

Signal

Figure 3-8: Tree transformation architecture. The two transformation layers contain
transformation primitives A1, A2 and B1, B2, respectively, while the aggregation
layer contains aggregation primitives Ag1, Ag2. Each box represents a single (in-
termediate) output.

3.6.3 Layer Pipelines

Tree pipelines provide a significantly higher degree of generality for extracting fea-

tures than their linear counterparts, but such pipelines nevertheless have their own

limitations. For instance, producing the full Cartesian product of features in several

layers of a tree pipeline may result in more output features than is manageable. Thus,

more refined layer generation of features is desirable.

Again, suppose we are given several transformation layers L1, L2, · · · , Li, · · · , Lk

and an aggregation layer containing primitives A = A1, A2, · · · , Am (M2). However,

within each transformation layer i and each transformation T j
i within layer i, we

explicitly specify the set of intermediate outputs from the previous layer that T j
i

is applied to, and similarly for all aggregations in the final layer (M3). Clearly,

this generation process results in a subset of features generated by the previous tree

pipeline, but does so in a more deliberate fashion (Figure 3-9).

Graph Interpretation

If we interpret the feature generation process as implying a directed graph between

nodes corresponding to intermediate outputs, with edges from one output to another
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...

...

...

...

Ag-1

Ag-2

Ag-3

Tr-B1 (A1)

Tr-B2 (A2)

Tr-B2 (A3)

Tr-A1 (S)

T-Layer A T-Layer B A-Layer

Tr-A2 (S)Signal Output Features

Tr-A3 (S)

1 from sigpro.pipeline import LayerPipeline

2 primitives = [A1, A2, A3, B1, B2, B3, Ag1, Ag2, Ag3]

3 combinations = [(A1, B1, Ag1), (A2, B2, Ag2), (A3, B2, Ag3)]

4 pipeline = LayerPipeline(primitives, combinations)

Figure 3-9: Example of a layered transformation architecture with correspond-
ing code. Some generated features could include A1.B1.Ag1, A2.B2.Ag2, and
A3.B2.Ag3. Each box represents a single (intermediate) output.

corresponding to the former vertex (output) being used as an input to some primitive

to produce the latter vertex (output), the difference between tree and layer pipelines

becomes even more clear. With all primitives in Li and A being held equal, at each

layer l, the layer pipeline will produce only a user-specified subset of intermediate

outputs {T t1
1 .T t2

2 . · · ·T tl
l }t1,t2,...,tl , whereas the tree pipeline will always generate all

possible combinations at any layer. Of course, the linear pipeline will only generate

a single intermediate output at any layer before the last.

In this discussion thus far, we have not considered the relevance of comparative

primitives. Comparative primitives, when applied to a (possibly transformed) time

series and a set of reference values, can be conceptualized as simply amplitude aggre-

gations with the reference values passed as an additional context argument. However,

there are situations where we would like the reference values to themselves be gen-

erated from a series of primitive transformations. Here, we allow the intermediate

output nodes corresponding to the comparative primitive to have multiple parent

nodes, and the rooted-tree structure generalizes to a directed acyclic graph (DAG).
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Generality

How general are layer pipelines? Consider any set S of possible output features gen-

erated by some number of transformations followed by some aggregation and express

it as S = {Ti1 .Ti2 . · · ·Tik .Aj}i1,i2,...,ik,j, where the number k of transformations is held

fixed; if the set of output features vary in the number of transformations applied, we

can simply pad them with identity transformations until all features have the same

length k. Then, at each layer l, we can define layer Ll to be the set of all transforma-

tions Til that appear as the l-th transformation in some output feature, and define

A to be the set of aggregations that appear in the feature set. We can see that the

set S of output features can be generated by a suitably chosen set of intermediate

outputs at each layer corresponding to the set of all unique prefixes of any length.

Hence, we conclude that any set S of features of the desired form can be represented

by a general layer pipeline (M3).

3.7 Pipeline Implementation

Just as SigPro primitives are represented by specific subclasses of the Primitive base

class, SigPro pipelines are represented by the Pipeline abstract base class; however,

default Pipeline objects cannot be instantiated, and instead Pipeline provides for

a common interface to process signals (Table C.2).

Interface

By default, Pipeline objects possess the following attributes:

• values_column_name (str): The name of the column in the dataframe corre-

sponding to input signal values. Defaults to "values", and is specified in the

process_signal method.

• pipeline (mlblocks.MLPipeline): The MLPipeline to be run on the input

data. This should be built by the constructor.

44



Besides these fields, Pipeline objects typically store a list of transformations and

aggregations used. For MLBlocks interface purposes, we also record whether the

input data is a DataFrame.

In addition, the Pipeline abstract class implements a variety of getters and set-

ters and specifies the get_output_features and process_signal methods in its

interface. The get_output_features method returns a list of features extracted by

the pipeline, whereas the process_signal method wraps around the constructed

MLPipeline field stored in self.pipeline to perform feature extraction from the in-

put data and output a transformed dataframe. We elaborate on this process further

in Section 4.1. Of these two methods, only the process_signal method is directly

implemented in Pipeline itself.

Finally, we provide several factory methods to generate and modify pipelines:

• build_linear_pipeline(transformations, aggregations): Builds a linear

pipeline with the list of transformations transformations and list of aggrega-

tions aggregations.

• build_tree_pipeline(transformation_layers, aggregation_layer): Builds

a tree pipeline with the list of transformation layers, each a list of primitives,

and the aggregation layer, also a list of primitives (Figure 3-10).

• build_layer_pipeline(primitives, primitive_combinations: Builds a layer

pipeline to generate all of the features in primitive_combinations from the

primitives given in primitives. Each feature in primitive_combinations is

specified as a tuple of the form (T1, T2, · · · , Tk, A), where T1, T2, · · · , Tk, A are

included in primitives.

• merge_pipelines(pipelines): Builds a layer pipeline that generates all fea-

tures produced by the input pipelines.

The merge_pipelines method gives an easy way for the user to compose several

existing pipelines (e.g. linear or tree pipelines) into a single, comprehensive feature

extractor without directly specifying a list of all desired output features.
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1 from sigpro.basic_primitives import (

2 Identity, FFT, FFTReal, Mean, Kurtosis)

3 from sigpro.pipeline import build_tree_pipeline

4

5 identity_tfm = Identity().set_tag('id')

6 fft_tfm, fft_real_tfm = FFT(), FFTReal()

7 mean_agg, kurtosis_agg = Mean(), Kurtosis(bias=False)

8

9 tfmlayer1 = [identity_tfm]

10 tfmlayer2 = [fft_tfm, fft_real_tfm]

11 agglayer = [mean_agg, kurtosis_agg]

12 tree_pipeline = build_tree_pipeline([tfmlayer1, tfmlayer2], agglayer)

Figure 3-10: Building a tree pipeline in SigPro from built-in primitives.

Subclasses of Pipeline

In SigPro, both the LinearPipeline and LayerPipeline classes implement the

Pipeline interface.1 As their names suggest, the LinearPipeline class represents

linear pipeline structures and the LayerPipeline class implements tree and layer

pipeline structures. While the representation of linear pipelines is rather straightfor-

ward, we opt to internally represent layer pipelines by their output features, rather

than their graph structure. The reason for this has already been hinted previously:

the generality of our layer pipeline architecture implies that both graph and output-

feature representations have the same amount of complexity. In particular, to specify

the connections producing the output features ending at the final aggregation layer

of a general layer pipeline, the amount of information needed is equivalent to speci-

fying the list of output features to begin with. Moreover, it is computationally quite

feasible to switch between these representations using a breadth first search. Finally,

this approach greatly simplifies the process of merging multiple pipelines and their

produced features into a single LayerPipeline.

1SigPro does not implement a separate TreePipeline class as its representation would not be
considerably distinct from that of a LayerPipeline. SigPro does, however, provide three unique
factory methods with distinct user interfaces for instantiating linear, tree, and layer pipelines.
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Building the MLPipeline

We previously noted that Pipeline objects wrap the mlblocks.MLPipeline class

in the self.pipeline field. However, the pipeline description interface (PDI) for

MLPipeline objects is typically sequential in nature [19, 18]. Thus, some care is

needed in creating and using MLPipelines to process signals.

We approach this task in several conceptual stages; the entire MLPipeline is built

and stored upon initialization of the pipeline.

1. Ordering the primitives. We will use the MLPipeline to repeatedly trans-

form columns of our input dataframe using primitives that we pass to it. In par-

ticular, this means that the order in which self.pipeline processes primitives

is highly restricted by the dependency relationships in the pipeline structure.

For linear pipelines, it suffices to pass in the ordered list of transformations fol-

lowed by the ordered list of aggregations, since all of the aggregations act upon

the result of applying the transformations in sequence. For layer (and tree)

pipelines, our execution order can be constructed via a breadth-first traversal

of the associated graph. This process is necessarily more involved, and typically

involves the repeated execution of a single primitive. Nevertheless, because in-

termediate outputs are expressed as specifically-named transient columns in

the data DataFrame, this process allows us to reuse shared computation and

produce a more compact pipeline as a whole.

2. Naming intermediate feature inputs and outputs. Here, we specify the

input_names and output_names as required by the MLPipeline constructor.

We name all intermediate outputs in the {T1}.{T2} . . . {Tk}.k.{output_name}

format, which are in turn re-used as input names in the following layers. Thus,

each primitive expects as input the output of the previous primitive.

In certain cases, some inputs are context arguments of the primitive, rather

than dynamically generated outputs of previous primitives. Such arguments are

assigned the input name {T}.{output_name} and are expected to be passed

within the input Dataframe upon runtime.
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3. Assigning hyperparameter values. We must explicitly pass in the hyper-

parameters of each constituent primitive to init_params. Fortunately, the

Primitive.get_hyperparam_dict() method can easily achieve this.

4. Naming final feature outputs. Ultimately, we would like our extracted

feature names to be intelligible to the user, and reflect the transformation and

aggregation primitives that produced them. Therefore, we assign the string

name {T1.tag}.{T2.tag}. . . . .{Tk.tag}.{A.tag} to each primitive T1.T2. · · · .Tk.A.

These values are passed into output_names in the MLPipeline constructor.

We reiterate that this procedure is completely abstracted away from the user,

who needs only to input the desired primitives and primitive combinations to the

build_linear_pipeline method. Thus, SigPro can represent a variety of feature

engineering pipelines while maintaining a low-code interface.

After self.pipeline is built, we have completed the initialization of the Pipeline

and are ready to process signal data.
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Chapter 4

Using SigPro

Now that we are able to form primitives and construct feature engineering pipelines,

we are ready to discuss the true purpose of SigPro: to engineer features from real-

world signal data.

4.1 Processing Signals

Following our discussion in Section 3.1.2, SigPro expects data in the form of a 2-

dimensional pandas.DataFrame with a specific column, specified by the user, contain-

ing the raw signal amplitude_values. Each row in the input DataFrame should repre-

sent a single timestamped observation and contain a single array of signal observations

in the appropriate values column. Context arguments should be specified as columns

with names of the form {primitive_tag}.{arg_name} (e.g. fft.sampling_frequency).

The Pipeline.process_signals method has the following arguments:

• data (pandas.DataFrame): A Dataframe with a signal values column.

• window (str): If specified, the length of the window to resample the signal

values so that each entry is itself a time series (e.g. "1h").

• values_column_name (str): The name of the column in the Dataframe cor-

responding to input signal values.

49



• time_index (str): The name of the time index column (e.g. "timestamp").

• groupby_index (Union(str, list[str]): If specified, the name(s) of the col-

umn(s) to group together and take the window over.

• keep_columns (Union[bool, list]: If bool, whether or not to keep non-

feature columns in the output Dataframe. If list, the list of the names of

columns to be kept in the output Dataframe.

• input_is_dataframe (bool): Whether the input data is a Dataframe. This

field is relevant for MLBlocks integration but not for signal processing directly.

For a Dataframe with values column named ‘values’ and time index ‘timestamp’,

only the data parameter is required. In turn, process_signals returns two outputs:

• (pandas.DataFrame) A Dataframe with additional feature columns resulting

from applying the pipeline to the data, in additional to the index and whichever

non-feature columns are indicated by keep_columns.

• (list) A list containing the feature names generated by the pipeline.

4.1.1 Integration into Larger Pipelines

Recall from Section 2.3 that SigPro pipelines function as feature-extracting pre-

processors within an end-to-end machine learning workflow. Because of this, we

may be interested in incorporating a full Pipeline as a single stage within a larger

SigPro pipeline, or even an MLPipeline. In the former case, the nested SigPro

pipeline functions as would an aggregation primitive, and the functionality of a

LayerPipeline is sufficient to accommodate these structures. For the latter situa-

tion, SigPro currenly provides a JSON annotation and MLBlocks integration support

for the LinearPipeline class by way of the get_input_args and get_output_args

methods; support for layer pipelines is planned in the future. Alternatively, SigPro

users can re-use output features as seed features in other feature engineering libraries.
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4.1.2 Usage Example

To summarize our presentation of SigPro pipelines, we give a full signal-processing ex-

ample building upon our code in Figures 3-2 and 3-10 with Primitives and Pipelines.

In Figure 4-1, we create and apply a tree pipeline containing three transformations

and two aggregations to extract four output features from a demonstration dataset.

1 # Import packages

2 from sigpro.basic_primitives import (

3 Identity, FFT, FFTReal, Mean, Kurtosis)

4 from sigpro.demo import _load_demo as get_demo

5 from sigpro.pipeline import build_tree_pipeline

6

7 # Define primitive objects

8 identity_tfm = Identity().set_tag('id')

9 fft_tfm, fft_real_tfm = FFT(), FFTReal()

10 mean_agg, kurtosis_agg = Mean(), Kurtosis(bias=False)

11

12 # Instantiate tree pipeline

13 tfmlayer1 = [identity_tfm]

14 tfmlayer2 = [fft_tfm, fft_real_tfm]

15 agglayer = [mean_agg, kurtosis_agg]

16 tree_pipeline = build_tree_pipeline([tfmlayer1, tfmlayer2], agglayer)

17

18 # Import and reformat sample input data

19 data = get_demo() # signal values contained in column �values�

20 data['fft.sampling_frequency'] = data['sampling_frequency']

21 data['fft_real.sampling_frequency'] = data['sampling_frequency']

22

23 # Process signal column of sample dataset �data�

24 processed_data, feature_columns = tree_pipeline.process_signal(data)

25 print(feature_columns)

26

27 # Output:

28 # ['id.fft.mean.mean_value', 'id.fft.kurtosis.kurtosis_value',

29 # 'id.fft_real.mean.mean_value', 'id.fft_real.kurtosis.kurtosis_value']

Figure 4-1: A full signal feature engineering workflow with SigPro.
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4.2 Zephyr

In this section, we discuss an application of the SigPro library for signal feature

engineering in a real-world wind energy context. Zephyr
1, first released in 2022 by

Frances Hartwell, is a ‘data-centric framework for predictive maintenance of wind

turbines’ [9]. To achieve this goal, Zephyr must be flexible to constantly changing

infrastructure and requirements while simultaneously integrating domain knowledge

at every step of the process. Existing task-specific ML tools, though powerful, fall

short of an easy-to-use solution for SMEs looking to create and end-to-end domain-

specific model. Instead, Zephyr provides SMEs with a low-code framework spanning

the entire scope of data to model development.

As with any ML workflow, Zephyr must extract relevant features from the pro-

cessed input data. In particular, signal processing techniques are usually required to

transform the turbine data, which often arrives in time-series form. Given the similar-

ity in design and usage goals between Zephyr and SigPro, the latter library is an ideal

solution to this task. Once the user produces the Dataframe containing signal values,

they can specify a set of transformation and aggregation primitives to Zephyr, which

will then process the signal column by building the corresponding SigPro pipeline

object and calling process_signal. During this phase, the user is free to explore,

use, or even contribute their own primitive combinations with SigPro’s primitive and

pipeline API. 2

Once the time series data is transformed and aggregated into several feature

columns, the user can proceed by applying other feature engineering libraries such

as Featuretools to further extract features. In each stage of this process, the user

can leverage their expertise to tailor the generation process to the most promising,

relevant features.

We conclude that SigPro provides an effective solution to signal feature extraction

when simplicity and domain knowledge are critical.

1https://github.com/sintel-dev/Zephyr
2In particular, the BandMean aggregation was contributed by domain experts as motivated by

empirical usage of SigPro to characterize an acute event.
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4.3 Vibrations Dataset Example

Lastly, we walk through an exploratory feature engineering example using a real-world

vibrations turbine dataset taken from an Iberdrola case study. 3 When concatenated,

the raw dataset contains 47 columns and over 6000 rows collected from 2020 to 2022.

Each row contains a timestamped series of observations by a particular sensor; in

addition, the data columns provide additional readings and information about the

turbine and site itself. We are primarily interested in transforming the values column

of the dataset and will use the rpm column to provide the sampling_frequency

argument as needed. For brevity, we assume that we have cleaned and collected the

appropriate data files in the vibrations.csv file (see Appendix D).

1 import pandas as pd

2

3 vibrations = pd.read_csv('vibrations.csv') # Import vibrations dataset

4 vibrations['sampling_frequency'] = vibrations['rpm']

Figure 4-2: Importing the Vibrations Dataset.

Our sample pipeline will apply the FFTReal transformation to the values, followed

by three BandMean aggregations, each covering a disjoint frequency range. Since we

would like to apply a single sequence of transformations followed by several aggrega-

tions, the most appropriate choice is a linear pipeline (Figure 4-3).

1 from sigpro.basic_primitives import BandMean, FFTReal

2 from sigpro.pipeline import build_linear_pipeline

3

4 transformations = [FFTReal()] # tag: fft_real

5 aggregations = [BandMean(200, 400).set_tag('band24'),

6 BandMean(400, 600).set_tag('band46'),

7 BandMean(600, 800).set_tag('band68')]

8 signal_pipeline = build_linear_pipeline(transformations, aggregations)

Figure 4-3: Forming the SigPro pipeline with build_linear_pipeline.

3https://github.com/sintel-dev/Iberdrola-case-studies
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Just as in Section 4.1, the final step is to process our signal values and produce

output features, which we show in Figure 4-4. We can then plot several histograms

of our computed band-mean values after performing FFT, and compare their distri-

butions (Appendix D).

1 import matplotlib.pyplot as plt

2

3 # Process the signal

4 processed, features = signal_pipeline.process_signal(vibrations)

5

6 for feature in features: # Plot feature histograms

7 plt.hist(processed[feature], label = feature)

8 plt.show()

Figure 4-4: Processing the signal and plotting the output features.

Figure 4-5: Distribution of mean (transformed) feature values across each band.

As we would in Zephyr, once we have generated our output features, we can

either continue exploring and transforming the data with SigPro, or proceed with

deep feature synthesis and downstream modeling.
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Chapter 5

Discussion

5.1 Why SigPro?

It is useful to consider where SigPro stands amidst the significant body of work de-

voted towards automating feature engineering pipelines that can automatically gen-

erate and select features from raw data, especially as part of an end-to-end modeling

procedure. As often noted, deep learning is one candidate approach for this task [10];

though deep approaches can often be successful in predictive contexts and even rival

expert feature engineers at a significantly lower labor cost [11], they generally suffer

from very poor interpretability [5] and often struggle in data-poor situations without

careful domain-specific intervention [20]. Thus, SME participation in some form may

not be avoidable. Overall, deep feature engineering aims to substitute the need for

expert interaction, in contrast, SigPro empowers SME discretion within the feature

engineering process. This proves especially valuable for signal data, where feature

extraction patterns are often idiosyncratic to the specific application [17].

If human expertise is an essential aspect of the feature engineering process, why go

so far as to build a primitive-based framework to automate it at all? It is true that ex-

isting open-source Python libraries such as numpy, scipy, and scikit-learn already

provide a broad set of tools that can be used for feature engineering. However, such

tools are less intuitive for non-developers and SMEs looking to leverage Python for

their own domains; function interfaces can be quite complex with numerous optional
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parameters, and modifying ad-hoc pipelines can prove quite time-consuming without

significant experience with machine learning libraries.

More subtly, simply relying on several disparate third-party solutions for domain-

specific tasks gives rise to significant amounts of glue code and the formation of thick

pipeline jungles [16]. As Sculley et al. observe, using generic packages in ML systems

increases the difficulty of leveraging domain expertise altogether. To combat these

problems, Sculley et al. recommend wrapping black-box packages into standard APIs

and approaching feature extraction holistically. Thus, by providing an additional

layer of abstraction with a user-friendly API, SigPro provides its users with a simple

yet flexible approach towards building bespoke signal feature engineering pipelines in

their own work.

5.2 Design Rationale

As we saw previously, SigPro extends the primitive-pipeline model introduced in

MLBlocks to extract signal features, but the two libraries do not treat primitives in

the same manner. In particular, MLBlocks explicitly opts for a JSON-based approach

for storing primitives [19] and wraps them with a flexible parser, as opposed to the

class-subclass approach we have presented thus far. This discrepancy, of course, begs

the question: why not solely adopt the JSON-parsing approach of MLBlocks instead?

To answer the question, we first examine the rationale for the pure JSON-based

approach to primitives taken in MLBlocks, and their relevancy in dictating the im-

plementation of Primitive objects in SigPro.

• Library size. Using a JSON specification for MLBlocks primitives reduced the

need to maintain Python implementations for each potential subclass. However,

the implementations for the underlying fitting and prediction methods must ex-

ist for any library primitive, as well as the corresponding JSON specification. An

additional library, MLPrimitives1, has been published for use with MLBlocks,

providing primitive annotations and necessary Python code for integration with
1https://github.com/MLBazaar/MLPrimitives/
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the MLBlocks API. Thus, the end user is still in a position to store integration

code and primitive annotations even for pre-built primitives. In the case of

SigPro, our goal of a self-contained feature engineering tool easily accessible to

non-experts compels us to provide the necessary signal processing-specific prim-

itive implementations in the library itself. We conclude that maintaining some

amount of integration code/annotations for each primitive is not avoidable, and

in fact desirable, in ensuring that SigPro remains accessible to its users.

• Language-generality. As pointed out in [19], the main benefit of the JSON

design is that it ensures block specifications are not implemented in a Python-

specific format; the MLBlock class interacts through its JSON annotations through

a collection of parsers. This is not entirely the case for SigPro; while primi-

tives do produce JSON annotations as required by the MLPipeline API, prim-

itives themselves are not language-agnostic. Nevertheless, our usage of the

MLPipeline backend with produced JSON annotations means that pipeline ex-

ecution retains to some extent the language independence of MLBlocks. We

ultimately chose to prioritize the clarity of our Python API over potential ex-

tensions to other languages.

• Ease of modification. Finally, Xue points out that their JSON approach

allows developers to easily update the functionality of the MLBlock base class by

updating only the class itself and modifying the parsers. We note in this scenario

that due to the subclassing relationships in SigPro, updating the functionality

of the Primitive base class would also require modifying only a single parent

class and updating parsers/constructors as appropriate.

In addition to its flexibility, we show how SigPro’s modular, class-based interface

supports our other design goals as articulated in Chapter 3.

• Streamlined Development. Developing with SigPro should be very straight-

forward, and code written with the library should be easy to understand and

modify as needed. By abstracting away the need to create and parse custom
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JSON annotations and simplifying the instantiation of individual primitives and

pipelines, SigPro increases the clarity of existing feature engineering pipelines

and eliminates much of the labor associated with creating new pipelines. While

domain experts often prefer to write functions as opposed to classes [18], the

get_primitive_class and make_primitive_class methods exploit Python’s

dynamic type creation so that no class definitions need be explicitly written

(Figure 3-5). Therefore, users can write primitive code in the style that best

matches their experience and needs.

• Customization of Primitives and Pipelines. As we have seen, SigPro

explicitly supports writing and contributing custom primitives. After writing

the primitive operation function itself, the contributor does so by either call-

ing make_primitive_class, or creating a custom subclass for the primitive

and then calling the object’s write_primitive_json() method, to record the

MLBlocks-compatible JSON annotation in the appropriate directory. There-

fore, the contributor is not responsible for manipulating or parsing the JSON

annotation.

Moreover, pipelines themselves are simple to build and modify, and benefit

from this design as well. Since all Pipeline objects need only to work with the

Primitive API of their constituent primitives, they can be instantiated and

used to process signals without regards to the specific properties of their com-

ponents. Users can therefore freely use, substitute and contribute Primitives

within their pipelines.
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Chapter 6

Conclusion

In this thesis, we have presented SigPro to meet our goal of a flexible, customiz-

able, and user-friendly library for knowledge-driven signal feature engineering. To

achieve these goals, we developed a class-based library of primitives that can be effi-

ciently composed into pipelines, enabling subject matter experts to easily incorporate

their domain knowledge into the feature generation process without needing to write

extensive and difficult glue code.

Our specific improvements to the SigPro library include:

1. Reworking SigPro primitives to be class based, thereby improving the

clarity of SigPro usage.

2. Revising the primitive contribution process to leverage our new Python-ic

primitive representation with a use-as-needed paradigm.

3. Demystifying pipeline usage by simplifying the code necessary to construct

and use pipelines.

4. Adding tree and layer pipeline construction patterns, as facilitated by

our new Pipeline specification.

5. Incorporating SME feedback into library features and design – in particular,

support for primitive transformation layers within a single pipeline.
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6. Providing comprehensive documentation and demonstrations for ex-

isting primitives and pipeline usage, speeding up the onboarding process for

future first-time users.

For future editions of SigPro, we may be interested in expanding our built-in

primitive library further to accommodate commonly used custom functionality. We

could also consider supporting additional feature composition patterns and their im-

plications for pipeline construction. In any case, further collaboration with our SME

users and Sintel community will be greatly beneficial to ensure that SigPro remains

an ideal signal feature engineering library.
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Appendix A

Primitive Interface

Method Parameters Return

Primitive

primitive
primitive_type
primitive_subtype
init_params

Primitive object with
hyperparameter values
init_params.

get_name N/A Name (full path) of
primitive function.

get_tag N/A User-given tag of
primitive.

get_inputs N/A dict of primitive inputs.
get_outputs N/A dict of primitive outputs.

get_type_subtype N/A tuple of primitive type
and primitive subtype.

get_hyperparam_dict N/A Dictionary containing hyp-
erparameter values.

make_primitive_json N/A dict containing primitive
JSON-style annotation.

set_tag tag Tagged primitive object.
set_primitive_inputs primitive_inputs None
set_primitive_outputs primitive_outputs None
set_context_arguments context_arguments None
set_tunable_hyperparam-
eters

tunable_hyperparam-
eters

None

set_fixed_hyperparameters fixed_hyperparameters None

write_primitive_json
primitives_path
primitives_subfolders

Path to written primitive
JSON annotation.

Table A.1: Interface of the Primitive class with optional parameters italicized.
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Appendix B

Available Primitives
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Primitive Hyperparameters Type Subtype Description

Identity None Transformation Amplitude Return the amplitude
values as-is.

PowerSpectrum None Transformation Amplitude Generates the power
spectrum.

FFT None Transformation Frequency Apply a discrete Fourier
transform to the values.

FFTReal None Transformation Frequency
Apply a discrete Fourier
transform to the values
and return the real parts.

FrequencyBand
low
high

Transformation Frequency
Filter between low
and high band
frequencies.

STFT None Transformation Frequency-time
Apply a short-time
Fourier transform to
the values.

STFTReal None Transformation Frequency-time
Apply a short-time Fourier
transform to the values
and return the real parts.

CrestFactor None Aggregation Amplitude
Compute the ratio of
the peak value to the
RMS of the values.

Kurtosis
fisher
bias

Aggregation Amplitude
Compute the kurtosis
(Fisher or Pearson) of
the values.

Mean None Aggregation Amplitude Compute the mean of
the values.

RMS None Aggregation Amplitude Compute the root mean
square of the values.

Skew None Aggregation Amplitude Compute the skew of
the values.

Std None Aggregation Amplitude Compute the standard
deviation of the values.

Var None Aggregation Amplitude Compute the variance
of the values.

BandMean
min_frequency
max_frequency

Aggregation Frequency

Compute the mean of
values where the signal
is filtered between
min_frequency and
max_frequency.

Table B.1: List of available primitive objects in SigPro.
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Appendix C

Pipeline Interface

Functions Parameters Return

LinearPipeline
build_linear_pipeline

transformations
aggregations

A LinearPipeline generating
all features from applying all
transformations, then separately
applying each aggregation.

build_tree_pipeline
transformation_layers
aggregation_layers

A LayerPipeline generating
all features in the Cartesian
product of the transformation
and aggregation layers.

LayerPipeline
build_layer_pipeline

primitives
primitive_combinations

A LayerPipeline generating
all features specified in
primitive_combinations.

merge_pipelines pipelines
A pipeline generating all
features produced by at least
one input pipeline.

Table C.1: A list of available factory methods and constructors to manipulate
pipelines.
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Instance Methods Parameters Return

get_primitives N/A A list of primitives used in
the pipeline.

get_output_features N/A A list of output features prod-
uce by the pipeline.

get_input_args N/A Input arguments to the pipeline.

get_output_args N/A Output arguments to the
pipeline.

get_pipeline N/A MLPipeline object wrapped
by the pipeline.

process_signal

data

window

values_column_name

time_index

groupby_index

keep_columns

input_is_dataframe

A Dataframe containing the
features extracted by the
pipeline from the input data
and any non-feature columns
given by keep_columns.

Table C.2: A list of instance methods supported by Pipeline objects with optional
parameters italicized.
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Appendix D

Vibrations Dataset Example Code

Here, we provide the full code used to produce our visualization in Figure 4-5. 1

1 import os

2 import pandas as pd

3 import matplotlib.pyplot as plt

4 from parser import extract_cms_jsons

5 from sigpro.basic_primitives import BandMean, FFTReal

6 from sigpro.pipeline import build_linear_pipeline

7

8 # Build the vibrations Dataframe

9 data_path = os.path.join('..', '..','..', 'VibrationsDataset')

10 years = ['2020', '2021', '2022']

11 vibrations = []

12

13 for year in years:

14 vibration_path = os.path.join(data_path, 'Vibration', year)

15 for subfolder in os.listdir(vibration_path):

16 folder = os.path.join(vibration_path, subfolder)

17 if os.path.isdir(folder):

18 df = extract_cms_jsons(folder)

19 vibrations.append(df)

20

21 vibrations = pd.concat(vibrations)

22 vibrations['sampling_frequency'] = vibrations['rpm']

23

24 # Build the pipeline

25 transformations = [FFTReal()]

1Data I/O code adapted from https://github.com/sintel-dev/Iberdrola-case-studies/
blob/main/notebooks/
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26 aggregations = [BandMean(200, 400).set_tag('band24'),

27 BandMean(400, 600).set_tag('band46'),

28 BandMean(600, 800).set_tag('band68')]

29

30 signal_pipeline = build_linear_pipeline(transformations, aggregations)

31

32 processed, features = signal_pipeline.process_signal(vibrations)

33

34 labels = ['Band Mean 200 - 400', # Nicer feature labels

35 'Band Mean 400 - 600',

36 'Band Mean 600 - 800']

37

38 for i, feature in enumerate(features):

39 plt.hist(processed[feature],

40 label = labels[i],

41 bins = 50,

42 alpha = 0.8)

43

44 # Formatting plot

45 plt.xlabel('Mean Value', fontsize = 13)

46 plt.ylabel('Observations', fontsize = 13)

47 plt.legend(fontsize = 11)

48 plt.show()
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