Towards building active defense systems for software
applications

Zara Perumal and Kalyan Veeramachaneni

Data to AI Lab, MIT LIDS, Cambridge, MA 02139,
{zperumal, kalyanv}@mit.edu
(617) 452-3968

Abstract. Over the last few years, cyber attacks have become increasingly so-
phisticated. PDF malware — a continuously effective method of attack due to the
difficulty of classifying malicious files — is a popular target of study within the
field of machine learning for cybersecurity. The obstacles to using machine learn-
ing are many: attack patterns change over time as attackers change their behavior
(sometimes automatically), and application security systems are deployed in a
highly resource-constrained environments, meaning that an accurate but time-
consuming machine learning cannot be deployed.

Motivated by these challenges, we propose an active defender system to adapt
to evasive PDF malware in a resource-constrained environment. We observe this
system to improve the fi score from 0.17535 to 0.4562 over five stages of re-
ceiving unlabeled PDF files. Furthermore, average classification time per file is
low across all 5 stages, and is reduced from an average of 1.16908 seconds per
file to 1.09649 seconds per file. Beyond classifying malware, we provide a gen-
eral active defender framework that can be used to deploy decision systems for
a variety of applications operating under resource-constrained environments with
adversaries.

1 Introduction

In recent years, cyber attacks have increased dramatically in both scale and sophisti-
cation. Last spring, the WannaCry ransomware attack crippled computers around the
world [9]. Soon after, attacks on the Equifax credit reporting agency compromised the
personal information of millions of users [20]. In addition, banks and Bitcoin exchanges
have been subject to an increasing number of attacks. Despite the wide-ranging nature
of these attacks, a few commonalities exist. First, most of these attacks enter an en-
terprise network through an application endpoint, generally when a user unknowingly
lets a file with “malware” inside the network - for example, by downloading a mali-
cious “pdf” (file) that was delivered via an email (application). Second, the most recent
attacks are increasingly attributed to Nation-State actors, or Nation-State sponsored
cyber-gangs [7, 19]. These powerful attackers often target individuals or small-scale
enterprises. Such large adversaries can devote many more resources to attacking a sys-
tem than their targets can devote to preventing such attacks— an asymmetry that presents
a challenging problem [17].

The increasing complexity and scale of software applications makes it even more
difficult to monitor their use, find their vulnerabilities, and defend them against attacks.

2 Zara Perumal and Kalyan Veeramachaneni

Application developers have to constantly make trade-offs, balancing between the us-
ability, effectiveness and security of the application. Simple rule-based or signature-
based defense systems, while quick to respond to attacks, are not robust enough to
provide true protection. Meanwhile, the fact that large amounts of data are constantly
being collected has led developers to seek machine learning-based solutions [3].

However, many significant challenges stand in the way of using machine learning
for cyber security. First of all, the evolving nature of cyber attacks breaks the assump-
tion that the historic attacks used to train a predictive model would resemble what will
actually arrive when the system is deployed. Instead of trying the same type of attack
over and over, attackers design automated evasive algorithms specifically to evade these
deployed models and create new variants [23, 30].

The second challenge stems from the complex dynamics of the security ecosystem.
The actors in a given security problem generally include sophisticated attackers, over-
burdened security analysts, enterprises who want to defend themselves but not forgo
the efficacy of their function, and end-users with a limited knowledge of how to pro-
tect themselves (and, subsequently, the enterprise). Complications might include cer-
tain detection strategies being public knowledge, or the limited availability of real-time
computational resources to run sophisticated detection approaches. Existing solutions
fall short in a number of ways. For instance, a highly optimized and accurate attack
detection solution could be useless if it also delays people’s ability to access and use
the application it is defending.

To mitigate these problems, we present an active defender system aimed at provid-
ing accurate detection in a resource-constrained, adversarial environment.

An active defender system: As shown in Figure 1, our active defender utilizes a

“Synthesize-Model-Decide-Adapt” (SMDA) framework to maintain high accuracy while
reducing classification time and resource usage. In this paper, we focus on a use case

involving PDF malware and test how our approach performs in presence of evasive

adversaries. !.

Our contributions through this paper are as follows:

1. We present a general-purpose Synthesize-Model-Decide-Adapt framework to en-
able the building, evaluating, deploying and subsequently adapting machine learning-
based application security systems.

2. We propose a multi detector based hierarchical decision making system. We tune
the system using Bayesian optimization methods to optimize the usage of the de-
tectors.

3. We present a simple Max-Diff approach, which we show evades even the most
sophisticated attack classification system.

The paper is organized as follows: Section 2 presents the use case we focus on in
this paper. Section 3 presents our method for synthesizing training examples, Section 4
presents the classifiers we use, Section 5 presents a tunable decision system, and Sec-
tion 6 presents how we adapt our system. Section 7 presents the experimental settings
and our results. Section 8 presents the conclusions and discusses future work. Rather

! Several recent studies suggest that PDF malware is evading classification using various auto-
mated methods [8, 11, 23, 30]

Towards building active application defense systems 3

Active Defender
Decision System
Adapt |+
. Learn
Synthesize »O Probabalistic
Training Data Model
Tune
Attacker —— > (O—»| Decision |——>»
Evasive Data :
Function

Fig. 1: Active Defender Sytem: The Active Defender system uses the “Synthesize-
Model-Decide-Adapt” framework. First the system is initialized by Synthesizing train-
ing data, then learning several machine learning-based detection models, and tuning the
decision system. After the system is deployed it is used to decide on new data, including
evasive data generated by the attacker. After a decision is made on newly received data,
the system adapts to update the models and decision system

than dedicate a separate section to related work, we have included it in context across
different sections.

2 Malware through PDFs

Of all the different file types available, users trust portable document formats the most.
People use portable document formats — PDFs for short — to upload everything from
academic conference paper submissions to government tax forms. They are also often
passed through emails as attachments. Despite their popularity, these unassuming doc-
uments contain a powerful format that enables attackers to embed and hide malicious
code, spy on users, or encrypt an end user’s computer in a ransomware attack [2]. In the
next subsection we present multiple ways to detect malware embedded in PDFs.

2.1 PDF Malware Detection

Network detection: Network detection aims to prevent the delivery of malicious con-
tent by intercepting it before a user has a chance to download it. Through email analysis
such as spam detection or network frequency methods, enterprises can filter out anoma-
lous behaviour and limit the phishing emails and attached malware that make it to the
end user. This is usually done in combination with static or dynamic analysis.

Static classifiers: These classifiers use static features of the PDF to quickly detect
anomalies before passing the document on to the users. These methods are preferred
for their low latency, but have higher error rates. Static classification methods include
signature-based detection methods, which can search a received file for the unique bit
strings of known malicious files. Other methods attempt to utilize higher-level features,
such as n-gram analysis or JavaScript pattern recognition [16, 18]. The most successful

4 Zara Perumal and Kalyan Veeramachaneni

static feature-based classifiers have been P D F Rate and Hidost. The PDFRate classi-
fier extracts 135 features based on the structure and metadata of a PDF document [25]
and uses them to train a machine learning classifier (see [4, 24]). Once the model is
trained, it works fast, taking less than a second to classify each new PDF. However, the
classifier can be evaded by adversarial algorithms using genetic programming methods
[30].

PDFRate Scores Cuckoo Scores Virus Total Scores
T T

c c c

£40 240 T T £40 T T

3 =) 3

2 2 2

= = 3.0 = 3.0

2 220 220

= Z1.0 10

% 0.0 § 0.0 % 0.0

a —1.0 0.0 1.0 20 & 0.0 0.5 1.0 a 0.0 0.5 1.0
Score Score Score

[Malicious 1 Benign [Malicious =8 Benign I Malicious 1 Benign

Fig. 2: Kernel density estimation approximation of Probability Density for scores gen-
erated using the PDFRate classifier (left), Cuckoo (center) and VirusTotal (right). This
plot shows the classifiers’ scores for malicious PDFs in pink and benign PDFs in blue.
The KDE plot was generated with a Gaussian kernel of width 0.1. A higher overlap in-
dicates an inability to accurately detect the malicious PDF. Predictably, out of the three
methods, VirusTotal is the best (with the least overlap), and PDFRate is the worst (with
the most overlap).

Dynamic behavioural analysis: The Cuckoo Sandbox runs each PDF dynamic analy-
sis sandbox on an isolated “sandboxed” environment. A Cuckoo server runs on the host
computer, receives files, and sends them to a virtual machine for analysis. In the virtual
machine, Cuckoo simulates opening PDFs in a vulnerable version of Adobe Acrobat,
collects information, and compares this information to a set of known behavioural sig-
natures. Cuckoo is fairly accurate for known malicious signatures, and usually requires
30 seconds of simulation time in a virtual machine. For our experiments we used virtual
machines set up in VMWare, running Windows XP and a vulnerable version of Adobe
Acrobat Reader 8.1.1. Using the results of the Cuckoo classification, we recorded the
list of known malicious behavioural signatures observed on the virtual machine when
the PDF was processed, and a Boolean indicating if any signatures were observed.

Publicly available APIs: VirusTotal is an API-based detection system. After a user up-
loads a PDF, it is checked using up to 59 static, dynamic and anti-virus classifiers, and
the results of this classification are returned. Some of the classifiers used by VirusTotal
include Endgame, Kaspersky Antivirus, Symantec, and Sophos. Aggregating these re-
sults can result in a highly accurate classification (see Figure 2), but can also be time-
and resource-intensive: a single classification can take up to two minutes, or longer in
times of high server load. Furthermore, corporations may be rate-limited by the API
and may have to pay for uploads. We collect the aggregate percentage of antivirus en-
gines that classified the uploaded PDF as malicious, and we also collect the following

Towards building active application defense systems 5

classification attributes for each of the scanners used by VirusTotal: version of scanner
used, scan result, and malicious classification.

Human expert analysis: Using human analysts to inspect malware samples is the most
accurate form of detection. However, the sheer rate of incoming PDFs requires faster
methods. Analysts can compare samples through a variety of methods, including com-
paring network calls and memory access, running the sample on a hardware sandbox,
or comparing activity on a device through a firewall.

Our dataset and method evaluation strategy: To demonstrate the efficacy of different
detection techniques, we accumulated a repository of 207,119 PDFs. We created this
dataset from a combination of existing, externally provided PDF files, and variations of
these PDF files generated via a process called mutation (we will describe this briefly in
Section 3). We gathered these PDFs from the following sources:

— Contagio: The Contagio dataset provided a corpus of 9,000 benign PDFs and 10,597
malicious files [1].

— EvadeML: EvadeML data provided by Weilin Xu contains 16440 malicious PDF
files developed using the “EvadeML” algorithm. These files are based off of 500
malicious files in the Contagio data set and are designed to confuse the PDFRate
classifier [30].

— Self-generated: PDFs can be generated from existing PDFs according to the “Random-
Mutation”,“Evade-ML” [30] or “Max-Diff” algorithms. Both the “Evade-ML” and
“Max-Diff” algorithms are based on genetic programming. These algorithms cre-
ate pools of samples, score them, and mutate the best-scoring samples to create
more malicious files. In this data set, we generated 8232 malicious files using the
“Max-Diff” algorithm and 35,680 benign files using random mutation.

We thus have a total labeled set of 79,949 files: 35,269 malicious and 44,680 benign.

3 Synthesizing training data

To develop an adaptive machine learning solution, we need labeled training examples
from the past and an ability to generate evasive versions over time. In recent years,
machine learning has been used to automatically create malware samples.

Machine learning to create malicious samples: Beyond the direct methods used to in-
ject malicious code and create PDF files, attackers can mutate existing PDF malware in
order to create new ones. Many recent studies have focused on methods for generating
adversarial PDF files to evade machine learning classifiers.

The mimicus framework presents a method for manipulating PDF classification,
through modifying mutable features and through gradient descent methods using at-
tributes of the model [4, 15]. The EvadeML framework presents a black box genetic
programming approach to evade a classifier when the classification score is known [30].
The EvadeHC method evades machine learning classifiers without knowledge of the
model or classification score [11]. The SeedExploreExploit framework presents another
evasion method for deceiving black box classifiers by allowing adversaries to prioritize
level diversity and accuracy to generate samples [23].

6 Zara Perumal and Kalyan Veeramachaneni

Other methods operate on the feature space and generate evasive features that could
confuse classifiers; however, it is not always clear how to convert evasive features back
into malicious files [13]. Many additional methods have been presented to deceive ma-
chine learning classifiers based on stationarity assumptions that do not hold in an adver-
sarial environment [5, 6, 10-12, 14, 21, 22, 27]. These attacks often focus on complex
classifiers, such as deep learning systems, which can be overfit to rely on features that
are correlated with malware, rather than those that are necessary for malware. In [29],
Wang et al show that complex classifiers can be evaded if even one unnecessary feature
is present.

EvadeML: EvadeML uses a genetic programming method to produce variants of the
malicious files using a method they call mutate.

fmutate() The malicious files are mutated using components from the pool of benign
files S,. The mutation method is implemented using a modified version of the PDFRW
software package” and works as follows:

Step 1: Load all PDF files into a tree structure.
Step 2: Mutate each malicious PDF by randomly doing one of the following:
— Insert randomly selected sub-tree from a benign file.
— Swap a randomly selected sub-element with a randomly selected sub-tree from
the benign file.
— Delete a randomly selected element in the malicious tree representation.
Step 3: Write the mutated tree back as a PDF file.

These variants are tested against the Cuckoo sandbox to ensure that their malicious
nature is preserved, then scored using static classification scores [30]. EvadeML found
variants that received classification scores of < 0, with PDFRate classifier. For this clas-
sifier, scores for benign are supposed to be closer to -1. A negative score for malicious
files indicate that the method was able to evade the classifier. In summary the algorithm
works as follows:

Step 0: Start with an empty set Sepqde = {}

Step 1: Create a set of mutant files using f,,, using the set of S,,,. Call this set .S, utants-

Step 2: Check which among the mutants are malicious using the oracle function o(). In
our case this is the Cuckoo classifier. Call this set S}, ;ant

Step 3: Apply PDFRate classifier to the set .S",,,...; and generate classification scores.

Step 4: Select the mutants that have classification scores less than the cutoff. Add these
to the set S.yqqe. These files are the ones that evade the PDFrate classifier.

Step 5: Repeat steps 1 -4 until |Seyqde| > 1y, where n,, is number of evasive variants

desired.

Max-Diff approach: We propose the Max-Diff approach as an alternative method for
generating malicious files. It is similar to the EvadeML algorithm in that it uses a ma-
licious and benign pool of variants, scores the malicious variants, mutates the best-
scoring variants, adds them to the pool of malicious files, and then continues. However,
unlike the Evade-ML algorithm, it does not seek to find files that receive a classification

2 https://github.com/mzweilin/pdfrwructure

Towards building active application defense systems 7

score less than the cutoff for a single classifier. Instead, it selects for files that receive
different classification scores from different classifiers in the system. For the active de-
fender system, Max-Diff targets files that evade PDFRate or VirusTotal. The algorithm
works are follows:

Step 0: Start with an empty set Sepade = {}

Step 1: Create a set of mutant files using f,,, and using the set of S,,. Call this set
Smutants-

Step 2: Check which among the mutants are malicious using the oracle function o(). In
our case this is the Cuckoo classifier. Call this set S}, ont

Step 3: Apply PDFRate classifier to set S}, and generate classification scores as
b1

Step 4: Upload the set to the VirusTotal website and generate VirusTotal classifier

scores for S) ,..n: @s well as classification scores. Collect these scores in ps

Step 5: Select the mutants that have abs(p; — p3) greater than a threshold specified by
cutoff. Add these to the set Seyqqe. These files represent files that receive different
scores from PDFRate vs. VirusTotal, and could confuse a classification system.

Step 6: Repeat steps 1 - 4 until |Seyade| > 1.

Evasive performance : We analyze these approaches based on their capability to evade
PDFRate (the fastest classifier) and VirusTotal (the most accurate classifier). As we
see in Figure 3, malicious files generated using the Evade-ML are effective in evading
PDFRate classification. Additionally, we observe that evasive files generated using the
Max-Diff approach are especially effective at evading the VirusTotal classifier. In com-
paring these results we see that the more time-consuming classifier, VirusTotal, does
achieve higher accuracy against evasive variants than the PDFRate classifier. However,
even Virus Total is not foolproof, which motivates the need for use of human analysts.

4 Learning models from training data

In our active defender system, we use the training data provided to us in the form of
file sets S,,, and S,. We divide the classifiers into two types, primary and secondary.
Primary classifiers/models take the files as input and produce a probabilistic score p.
Secondary classifiers/models take the output of the primary classifiers and deliver a
probabilistic score. Although all secondary models are machine learning models, not
all primary models are.

Primary classifiers: The active defender system uses the classifiers described in Sec-
tion 2. These are: PDFRate (denoted as C7), the Cuckoo classifier (denoted as Cs,
which returns scores ps indicating if known behavioural signatures of malicious files
were detected) and a VirusTotal (C3) classifier that outputs the percentage of VirusTo-
tal classifiers that classify the file as malicious (p3)

Secondary Classifiers: Secondary classifiers are designed to take in output scores from
the primary classifiers and learn a machine learning model. Two secondary classifiers
are developed in our active defender system. They are:

8 Zara Perumal and Kalyan Veeramachaneni

c c

kel PDFRate Scores ksl Virus Total Scores

5 4.0 T T 5 4.0 T T T

Q Q

5 3.0 8 G 3.0 B
[a) | | [a)

> 2.0 > 2.0

5 1.0 8 5 1.0

-§ 0.0 : - § 0.0

2 -1.0 0.0 1.0 2.0 2 0.0 0.5 1.0

o Score o Score

@ Evade ML Variants =1 Max-Diff Variants I Evade ML Variants =1 Max-Diff Variants
I Original Mal Files =1 Benign [Original Mal Files = Benign

Fig. 3: KDE approximation of Probability Density for the PDFRate (top) and VirusTotal
(bottom) scores. This plot shows the classification scores for different types of files. The
benign files are shown as pink, the Contagio malware samples are shown in purple, the
EvadeML variants are shown in blue, and the Max-Diff variants are shown in green.
The KDE plot was generated with a Gaussian kernel of widths 0.15, 0.15, 0.17, and
0.17 for the Benign, Contagio, EvadeML, and Max-Diff files respectively. In this case,
the Evade-ML, Max-Diff, and Benign files had very similar probability densities, and
differing width kernels were used in order to distinguish them.

Primary PDFrate Cuckoo Virus total

P, —s
P —>] 1

Secondary)‘ c, . P, —>| C, .
Py —>] P, D, S| P,

Fig. 4: Active Defender Classifiers: Primary classifiers (C1,C5,C'3) receive samples and
produce probabilistic scores (p1,p2,p3). Secondary classifiers use these probabilistic
scores as inputs. Secondary classifier Cy uses inputs (p1,p2) to produce the probabilistic
score pg, and Cj uses inputs (p1,p2,p3) to output the probabilistic score ps.

— C} uses the outputs of PDFRate (C7) and Cuckoo (C2) as inputs and produces a
probabilistic score (py4).

— (5 uses the outputs of PDFRate (C), Cuckoo (C), and Virus Total (C3) as inputs
and produces a probabilistic score (ps).

S A tunable decision system

In real time, in order to determine whether or not a new input file s is malicious, we
apply a hierarchical decision system that adaptively makes use of multiple classifiers.
In developing such a decision system, we considered the following goals:

— Increase throughput: We would like to make decisions about PDFs as fast as pos-
sible. Because PDFRate is the fastest in giving us the prediction (and VirusTotal is
the slowest), we would like to use PDFRate as much as possible.

Towards building active application defense systems 9

— Maintain accuracy: While it is easiest to increase our throughput by choosing to
use the PDFRate classifier every time, this will lead to a lot of false positives if we
have to maintain a high recall of 90%, and we would have to augment with Cuckoo
or VirusTotal.

To achieve the goals above, we propose the following:

a bi-level decision function for classifiers, described in section 5.1,

— a hierarchical, tunable decision system, described in section 5.2,

— A cost function that evaluates the efficacy of a given decision system, described in
section 5.3,

— atuning algorithm that produces a viable decision system, described in section 5.4.

5.1 Bi-level decision function

Given a classifier C; and its output score p;, a bi-level decision function allows us to
make a decision D; based on two decision thresholds, tll and tf, as depicted in Figure 5
and more formally given by:

Benign ifp; <t}
D; = < Uncertain, output p; if p; > ¢} and p; < t? (1)
Malicious ifp; > 12

This allows us to make a decision when we are absolutely confident, and enables us to
postpone the decision in regions where we are uncertain.

Fig.5: Bi-level decision function. With input of p;, the bi-level decision returns a re-
sult if it is certain of the classification. It classifies an input as benign if p; < ¢! and
malicious if p; > tf. If t% <p; < t?, the function returns p;, as the result is uncertain.

5.2 Hierarchical tunable decision system

The hierarchical decision system is shown in Figure 6. This system determines a final
classification result () and a probabilistic score (Pf;yq;) for each input sample using
layers of bi — level classifiers. The Py;pq; score is calculated using the output of the
last classifier (p;qst), the threshold used in the last decision (;45¢), the number of pri-
mary classifiers used (Np¢_yseq), and the total available primary classifiers (Npc_total)
as shown below:

10 Zara Perumal and Kalyan Veeramachaneni

N,
o pc-used
Pfinal - Ni * abs(plast - tlast) (2)
pe-total
PDFrate 1)
—— C _—> P1<tl — Benign
s (Cy) P, } Yes
No
pl >t12 e Malicious
No
o
e C(uék?o e _— p,1<ti Yoo Benign
S 2 p2 p4 o
2 -
p'1 >t<1 o Malicious
No
(P p,)
Virus total -
—> C _—> 05 — p3 >t,‘ —> Malicious
S (3) D, D, : 5 Yes

™

Benign

Fig. 6: Active Defender Hierarchical Decision System: A PDF is first sent to the
PDFRate classifier (C7). Based on the output of PDFRate, p;, a decision is made
whether to return a result or send the file to the Cuckoo classifier (C5). If the file is
sent to the Cuckoo classifier, the results from PDFRate (p;), and Cuckoo (ps) are sent
to the secondary classifier Cy and a decision is made as to whether to return a result or
sent the file to VirusTotal (Cj3). If the file is sent to the VirusTotal classifier, classifica-
tion scores from the PDFRate (p;), Cuckoo (ps), and VirusTotal (p3) classifiers are sent
to the C'5 secondary classifier and a final decision is made.

5.3 Cost function

The cost function expresses the two objectives we specified above — the throughput,
and whether the desired accuracy is achieved. Given a fully specified decision system,
with classifiers O 5, decision thresholds t1,t2, ¢} #2 5, and a set of files S, the cost
c incurred by the system is evaluated as:

. 1
:—'y*g(Y7Y)+(1—’y)*EZ7'i ®)

where Y is the set of predicted labels, Y are the corresponding true labels, g(.)
measures the accuracy of the predicted labels, ﬁ >, 13 is the average classification
time taken to make these decisions based on the subset of models used for each file in
the set per sample, and -y is a weight associated with each of the factors.

Towards building active application defense systems 11

g(.) function The g(.) function describes the accuracy of a system. We provide two
methods of characterizing system accuracy. In g;(.), the fl score is optimized to im-
prove precision and recall.

91(.) = fi(predicted, true_labels) 4

In go(.), the function requires a minimal threshold of precision and then optimizes for
recall. This function is especially applicable for malware detection, as allowing an ad-
ditional malicious file to enter the system can be very costly, but is required to keep
false rejection of benign files below a certain specified rate for user happiness.

&)

recall(Y,Y) if precision(Y,Y) > 0.9
92 = .
0 otherwise

5.4 Tuning algorithm

Since the active defender system utilizes a set of thresholds to determine the decision
for an input sample, funer optimizes these thresholds based on their effect on a cost
function. The tuning algorithm uses additional training data to optimize.

Tuner comprises two main steps. First, the tuner algorithm enumerates an initial set
of classifier thresholds using an enumeration function e() to generate a set of thresholds
T, and scores them with the cost function g. This is done in two steps.

- First, we produce a 2 lists of possible “threshold pairs” for each pair of thresholds:
by W, St ,t%),(t}l,ti) respectively.

- For the last threshold ¢5 we produce a list of possible thresholds /.

- Finally, we create {7 using all possible combinations of threshold pairs across lists
étl ,£t4 and Ets .

In our enumeration function e() we produce threshold pairs using the 0%, 20%,
40%, 60%, 80%, and 100% percentile values of previous classification scores for that
classifier. For example, if previous PDFRate classification scores p; were observed be-
tween 0.0 and 0.5, then:
¢, = {(0.0,0.1),(0.1,0.2), (0.3,0.4), (0.4,0.5) }. The last threshold list is (¢;,) a list
of the 0% , 20%, 40%, 60%, 80%, and 100% percentiles for respective score ps. More
complex enumeration functions can be developed to capture a more expressive range of
thresholds.

Enumerating a large threshold set is important in systems with complex cost func-
tions such as g»(.) which are not monotonic. If too few initial thresholds are enumer-
ated, optimization can result in thresholds that find a local rather than a global minimum
cost function value.

Second, funer uses a maximum of 7Njterqtions Of Bayesian hyperparameter tuning
3 to propose an additional candidate threshold sets, evaluate it using g, add it to the
threshold set 7', and find the thresholds that minimize the cost function g. In iterative
tuning, e specifies the minimum distance between successive minimum scores to stop
optimization [26].

3 We make use of the open source library: https://github.com/HDI-Project/BTB

https://github.com/HDI-Project/BTB

12 Zara Perumal and Kalyan Veeramachaneni
6 Adapting over time

One of the most important aspects of the active defender system is the ability of the
entire system to adapt over time, enabling it to overcome attackers who build evasive
variants. Known as active learning, this adaptation can happen over time, simply by
adding verified labeled training examples.

In [28], Veeramachaneni and Arnaldo study the use of active learning in cyberse-
curity. They use multiple outlier detection systems, send suspicious activity to analysts
and seek their input in order to be able to provide more training examples to the ma-
chine learning model over time. We build on this idea, generating more labeled training
data using a variety of possible methods:

— higher accuracy classifiers: we can incorporate predictions from VirusTotal as pos-
sible source of true labels.

— human analysts: we can send some examples to humans to get their analysis. This
is expensive, but still doable.

— synthetically generated evasive variants: From time to time, we can create evasive
confirmed malicious variants using the machine learning methods we described in
Section 3.

3 . Split Data . Split Data .
Srecieved > —> | Sselected STrain STrainPrimary |~ Update].:.’rl.ma.ry
Classifiers

l

S'I1’.\11\5(~,n:un(1m’\' — Update St.aconda.ry
Classifiers

|

Yiccieved » P,

recieved

.
Sune

Fig. 7: Data flow diagram of how new training examples are used to adapt the system.
1) Input data S,eceiveq sent through the decision system to produce predicted labels
Y eceived and probabilities. 2) Samples are selected in using probabilities Prcceived- 3)
The selected data Sgejecteq 1S Split into Sipqipn and Syype. 4) The training data Syy.qip, 1S
split into Sp,imary used to train the primary classifiers and Sgecondary Used to update
the secondary classifiers. 5) The tuning data Sy, is used to tune the decision system

Adapt in Active Defender: In an active learning scenario, we use additional data to up-
date the models and fune the decision system. For unlabeled data, the system generates
labels and final probabilities using the predictions from the previous learned models
and the decision system. The adapt algorithm uses the following steps also shown in
Figure 7.

— SELECT: chooses the files that are above a set minimum probability threshold («)
to be used as malicious training examples.

Towards building active application defense systems 13

— UPDATE: uses a subset of the selected files specified by () to learned model. This
subset is further divided into two parts: one used to train the primary and the second
used to train secondary classifiers, specified by parameter p. In the active defender
system, the PDF Rate classifier (C1) is the only primary classifier that can be
retrained.

The second part is used to update the secondary classifiers, Cy, C5 using the new
predictions of PDFRate for the labeled data.

— TUNE: uses the remaining files to tune the decision function given the enumeration
function, e(), maximum number of tuning iterations (nterations), and difference
between successive minimum scores €.

7 Experimental Setup

In order to understand the performance of the active defender system, we analyze its
accuracy and resource use as it adapts. In the experimental design, we first split the data
into two data sets, as shown in Figure 8.

Training Data: D corresponds to data used to train the initial system. In our exper-
imental setup, D consists of the 10,597 Contagio malware files and 10,597 benign
PDFs randomly selected from the 44,680 benign files discussed in Section 2.

Split
W q17 qQ’ A q](J

Fig. 8: Splitting Experimental Data. In the following experiment, the data is split into
data sets D1 and D,. D1 is used to initialize the decision system. D, represents data
received by the system after it is deployed. Ds is split into subsets ¢;, representing the
files received in each successive stage.

Split
data

Adaptation Data: D, is data received by the system after it is deployed. The adaptation
data, D-, consists of the evasively generated malware and remaining benign PDF files.
As shown in Figure 8, this data is split into subsets g1 through ¢5 and is sent to the
decision system across 5 stages or time periods.

Settings: We perform 25 random trials. In each trial, the order of the files is randomized
giving D; and D, different files across trials. As a result the subsets ¢; ... g5 are also
different.

In setting up the decision system, we set the following parameters for the tuning
algorithm described in Section 5 and Section 6.The cost function is ¢;(); a -y value of
0.9 is used to prioritize accuracy over resource usage and an epsilon value of € = 0.1 is
set.

14 Zara Perumal and Kalyan Veeramachaneni

D,]—» DS, — DS, — DS, -
f t
4, 4,

Fig. 9: Updating the decision system. In the experiment, training data D; is used to
initialize the decision system. After the system is deployed, it receives additional data.
After each additional received dataset g;, the decision system adapts.

7.1 Results

Overall, we see that the system is able to adapt to achieve high accuracy in the presence
of evasive adversaries, and to reduce resource usage over time.

Accuracy: As shown in Figure 10 and Table 1, we observe the performance of the deci-
sion system when classifying successive sets of received files. We characterize accuracy
by observing the f; score, comparing truth versus labeled data. As evasive variants are
introduced in stage 1, we observe a low f; score. However, as the stages progress, we
observe that the system is able to adapt to improve accuracy over time.

» 0.50 Staqes VS. Fj Scoreg, ‘
040 s
g0
» 0.30 - 8
E 020 [) ? 1 | | il
1 2 3 4 5
Stages

Fig. 10: Accuracy over Adaptation: In this figure, we observe the f; score vs. the ex-
perimental stage over time. We plot the mean f; score as points and show the standard
deviation in the surrounding band. We observe poor results in Stage 1, when evasive
samples are introduced. Over time, we observe that the f; score increases as the system
adapts to evasive samples.

Resource Usage: For the purposes of this experiment, we characterize resource usage
by studying the average time used to classify each file. As shown in Figure 11 and
Table 1, when the system is initialized, classification time is relatively low, at around
1(s) per file. However, we observe that the classification time continues to decrease
over time, indicating that the PDFRate static classifier is improving and being utilized.
In calculating the estimated classification time, we model the PDFRate as taking 1
second, Cuckoo as taking 25 seconds and VirusTotal as taking 90 seconds. These have
come from our own experience running three classifiers for several thousands of PDFs.
Notably, the standard deviation in classification time is too small to observe using four
decimals of precision. This is likely due to the majority of files being classified by the
static classifier and our estimation function limiting the variability in time.

Towards building active application defense systems 15

118 Siaqes vS. Time
ikl *
g 112] .,
= 1837 ! ! .\ \. *
’ 1 2 3 4

Stages

Fig. 11: Time taken to classify as the system runs for several stages: In this figure,
we observe the estimated classification time per file at each stage. We plot the mean
time as points and show the standard deviation in the surrounding band. Here we see
that the average classification time is pretty low, around 1.16 second, and decreases
throughout the course of the experiment. The deviation in time is small per stage, and
is not observable due to the estimation function.

Stage Hf1 Of1 M Time per File O Time per File
1 0.17535 0.01003 1.16908 <0.0001
2 0.19852 0.01459 1.16908 <0.0001
3 0.44201 0.01804 1.10766 <0.0001
4 0.45301 0.01829 1.10208 <0.0001
5 0.4562 0.02082 1.09649 <0.0001

Table 1: Experimental data: 25 trials of the Active Defender System performance over
5 stages. Column /11 corresponds to the average fi score across all trials. Column o ¢
corresponds to the standard deviation in f; score across all trials. Column pirimeper File
corresponds to the average estimated classification time per file. Column orimeper File
corresponds to the standard deviation in approximated classification time per file.

8 Discussion and Future Work

We were able to make four contributions through this paper. First, we developed a
method to use machine learning in application security in a resource-constrained en-
vironment. Second, we developed algorithms that use active learning to improve fast
classifiers in the presence of adversaries. Third, we provided an extensible framework
to facilitate building, evaluating and deploying decision systems in an adversarial and
resource-constrained environment. Fourth, we provided a simple evasive algorithm that
was shown to confuse automated classifiers.

While studying the adversarial and resource-constrained problem of detecting eva-
sive PDF malware and building these solutions, we identified a few takeaways that
motivate future work.

Evasive approaches motivate adaptation over time: In studying the available clas-
sifiers, we were surprised to see that the max-diff approach was effective in evading
the VirusTotal classifier. VirusTotal is a powerful classification system that has been ac-
quired by Google and was considered to be one of the best products of 2007. If this ge-
netic programming-based algorithm can cause confusion in malicious and benign files,

16 Zara Perumal and Kalyan Veeramachaneni

this suggests that adversaries are more than capable of deploying their own evasive al-
gorithms to evade automated classifiers. This motivates the need for human-in-the-loop
systems and systems that adapt over time.

Active Defender In studying the behaviour of the active defender decision system, we
identified aspects of the decision and adaptation methods that could be improved upon
in future work. Exploring different methods for tuning the decision system could reduce
the tuning time necessary to achieve high accuracy. Studying different ways of using
available primary classifiers could decrease classification time. Using randomization
to select a small number of files to be sent to the most accurate classifiers can make
the system more robust to files that can completely evade simple classifiers. Finally,
studying more complex methods could improve adaptation — for example, automated
synthesis to create new samples to improve confidence in predictions after adaptation.

8.1 Conclusion

As motivated attackers use more and more computational resources and state-of-the-art
algorithms to persistently attack smaller corporations, it is necessary to figure out how to
allow detection methods to adapt in a resource-constrained environment. As enterprises
collect more and more data, machine learning can be an asset to application security;
however, each institution looking to defend their system will have different limitations
on the resources they can devote to analyzing this data. In this paper, we propose an
active defense system that utilizes the SMDA framwork. This system can be tailored
for different resource limitations and environments. Furthermore, we believe that this
software framework and algorithms can generalize beyond PDF malware detection, en-
abling researchers and corporations to work together to secure systems against powerful
and evolving adversaries.

Bibliography

[1] Contagio dump, http://contagiodump.blogspot.com (accessed on 2016.11.11).,
http://contagiodump.blogspot.com

[2] The rise of document-based malware. https://www.sophos.com/en-us/security-
news-trends/security-trends/the-rise-of-document-based-malware.aspx

[3] The rise of machine learning (ml) in cybersecurity. https://www.crowdstrike.com/
resources/white-papers/rise-machine-learning-ml-cybersecurity/

[4] Mimicus framweork. https://github.com/srndic/mimicus (2017)

[5] Argyros, G., Stais, I, Jana, S., Keromytis, A.D., Kiayias, A.: Sfadiff: Automated
evasion attacks and fingerprinting using black-box differential automata learning.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security. pp. 1690-1701. ACM (2016)

[6] Argyros, G., Stais, 1., Kiayias, A., Keromytis, A.D.: Back in black: towards for-
mal, black box analysis of sanitizers and filters. In: Security and Privacy (SP),
2016 IEEE Symposium on. pp. 91-109. IEEE (2016)

[7] Ashford, W.. Cyber criminals catching up with nation state attacks,
https://www.computerweekly.com/news/252435701/Cyber-criminals-catching-
up-with-nation-state-attacks

[8] Biggio, B., Corona, 1., Maiorca, D., Nelson, B., grndié, N., Laskov, P., Giacinto,
G., Roli, F.: Evasion attacks against machine learning at test time. In: Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases.
pp- 387-402. Springer (2013)

[9] Bossert, T.P.: It’s official: North korea is behind wannacry (Dec 2017), https://
www.wsj.com/articles/its-official-north-korea-is-behind-wannacry- 1513642537

[10] Chen, Y., Nadji, Y., Kountouras, A., Monrose, F., Perdisci, R., Antonakakis, M.,
Vasiloglou, N.: Practical attacks against graph-based clustering. arXiv preprint
arXiv:1708.09056 (2017)

[11] Dang, H., Huang, Y., Chang, E.C.: Evading classifiers by morphing in the dark
(2017)

[12] Hosseini, H., Xiao, B., Clark, A., Poovendran, R.: Attacking automatic video
analysis algorithms: A case study of google cloud video intelligence api. arXiv
preprint arXiv:1708.04301 (2017)

[13] Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks
based on gan. arXiv preprint arXiv:1702.05983 (2017)

[14] Kantchelian, A., Tygar, J., Joseph, A.: Evasion and hardening of tree ensemble
classifiers. In: International Conference on Machine Learning. pp. 2387-2396
(2016)

[15] Laskov, P, et al.: Practical evasion of a learning-based classifier: A case study. In:
Security and Privacy (SP), 2014 IEEE Symposium on. pp. 197-211. IEEE (2014)

[16] Li, W.J., Stolfo, S., Stavrou, A., Androulaki, E., Keromytis, A.D.: A study of
malcode-bearing documents. In: International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment. pp. 231-250. Springer (2007)

http://contagiodump.blogspot.com
https://www.sophos.com/en-us/security-news-trends/security-trends/the-rise-of-document-based-malware.aspx
https://www.sophos.com/en-us/security-news-trends/security-trends/the-rise-of-document-based-malware.aspx
https://www.crowdstrike.com/resources/white-papers/rise-machine-learning-ml-cybersecurity/
https://www.crowdstrike.com/resources/white-papers/rise-machine-learning-ml-cybersecurity/
https://github.com/srndic/mimicus
https://www.computerweekly.com/news/252435701/Cyber-criminals-catching-up-with-nation-state-attacks
https://www.computerweekly.com/news/252435701/Cyber-criminals-catching-up-with-nation-state-attacks
https://www.wsj.com/articles/its-official-north-korea-is-behind-wannacry-1513642537
https://www.wsj.com/articles/its-official-north-korea-is-behind-wannacry-1513642537

18

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

Zara Perumal and Kalyan Veeramachaneni

MacFarlane, D., Network, I.C.. Why even smaller enterprises should con-
sider nation-state quality cyber defenses (Sep 2017), https://www.csoonline.com/
article/3223866/cyberwarfare/nation-state-quality-cyber-defenses.html

Maiorca, D., Corona, 1., Giacinto, G.: Looking at the bag is not enough to find
the bomb: an evasion of structural methods for malicious pdf files detection. In:
Proceedings of the 8th ACM SIGSAC symposium on Information, computer and
communications security. pp. 119-130. ACM (2013)

Millman, R.: Nation state cyber-attacks on the rise - detect lateral movement
quickly (Feb 2018), https://www.scmagazineuk.com/nation-state-cyber-attacks-
on-the-rise--detect-lateral-movement-quickly/article/746561/

Riley, M., Robertson, J., Sharpe, A.: The equifax hack has the hallmarks of state-
sponsored pros (Sep 2017), https://www.bloomberg.com/news/features/2017-09-
29/the-equifax-hack-has-all-the-hallmarks- of-state-sponsored- pros

Rosenberg, 1., Shabtai, A., Rokach, L., Elovici, Y.: Generic black-box end-to-end
attack against rnns and other api calls based malware classifiers. arXiv preprint
arXiv:1707.05970 (2017)

Sethi, T.S., Kantardzic, M.: Data driven exploratory attacks on black box classi-
fiers in adversarial domains. arXiv preprint arXiv:1703.07909 (2017)

Sethi, T.S., Kantardzic, M., Ryu, J.W.: security theater: On the vulnerability of
classifiers to exploratory attacks. In: Pacific-Asia Workshop on Intelligence and
Security Informatics. pp. 49-63. Springer (2017)

Smutz, C., Stavrou, A.: Malicious pdf detection using metadata and structural fea-
tures. In: Proceedings of the 28th Annual Computer Security Applications Con-
ference. pp. 239-248. ACM (2012)

Smutz, C., Stavrou, A.: When a tree falls: Using diversity in ensemble classifiers
to identify evasion in malware detectors. NDSS (2016)

Swearingen, T., Drevo, W., Cyphers, B., Cuesta-Infante, A., Ross, A., Veera-
machaneni, K.: Atm: A distributed, collaborative, scalable system for automated
machine learning. In: IEEE International Conference on Big Data (2017)

Tong, L., Li, B., Hajaj, C., Vorobeychik, Y.: Feature conservation in adversarial
classifier evasion: A case study. arXiv preprint arXiv:1708.08327 (2017)
Veeramachaneni, K., Arnaldo, 1., Korrapati, V., Bassias, C., Li, K.: Ai" 2: train-
ing a big data machine to defend. In: Big Data Security on Cloud (BigDataSe-
curity), IEEE International Conference on High Performance and Smart Comput-
ing (HPSC), and IEEE International Conference on Intelligent Data and Security
(IDS), 2016 IEEE 2nd International Conference on. pp. 49-54. IEEE (2016)
Wang, B., Gao, J., Qi, Y.: A theoretical framework for robustness of (deep) clas-
sifiers under adversarial noise. arXiv preprint arXiv:1612.00334 (2016)

Xu, W., Qi, Y., Evans, D.: Automatically evading classifiers. In: Proceedings of
the 2016 Network and Distributed Systems Symposium (2016)

https://www.csoonline.com/article/3223866/cyberwarfare/nation-state-quality-cyber-defenses.html
https://www.csoonline.com/article/3223866/cyberwarfare/nation-state-quality-cyber-defenses.html
https://www.scmagazineuk.com/nation-state-cyber-attacks-on-the-rise--detect-lateral-movement-quickly/article/746561/
https://www.scmagazineuk.com/nation-state-cyber-attacks-on-the-rise--detect-lateral-movement-quickly/article/746561/
https://www.bloomberg.com/news/features/2017-09-29/the-equifax-hack-has-all-the-hallmarks-of-state-sponsored-pros
https://www.bloomberg.com/news/features/2017-09-29/the-equifax-hack-has-all-the-hallmarks-of-state-sponsored-pros

	Towards building active application defense systems
	Introduction
	Malware through PDFs
	PDF Malware Detection

	Synthesizing training data
	Evasive performance

	Learning models from training data
	A tunable decision system
	Bi-level decision function
	Hierarchical tunable decision system
	Cost function
	g(.) function

	Tuning algorithm

	Adapting over time
	Experimental Setup
	Results

	Discussion and Future Work
	Conclusion

