
Bayesian Tuning and Bandits: An Extensible, Open
Source Library for AutoML

by

Laura Gustafson

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

© Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 25, 2018

Certified by. .
Kalyan Veeramachaneni

Principal Research Scientist
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chairman, Masters of Engineering Thesis Committee

2

Bayesian Tuning and Bandits: An Extensible, Open Source

Library for AutoML

by

Laura Gustafson

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2018, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

The goal of this thesis is to build an extensible and open source library that handles
the problems of tuning the hyperparameters of a machine learning pipeline, selecting
between multiple pipelines, and recommending a pipeline. We devise a library that
users can integrate into their existing datascience workflows and experts can contribute
to by writing methods to solve these search problems. Extending upon the existing
library, our goals are twofold: one that the library naturally fits within a user’s existing
workflow, so that integration does not require a lot of overhead, and two that the three
search problems are broken down into small and modular pieces to allow contributors
to have maximal flexibility.

We establish the abstractions for each of the solutions to these search problems,
showcasing how both a user would use the library and a contributor could override
the API. We discuss the creation of a recommender system, that proposes machine
learning pipelines for a new dataset, trained on an existing matrix of known scores
of pipelines on datasets. We show how using such a system can lead to performance
gains.

We discuss how we can evaluate the quality of different solutions to these types of
search problems, and how we can measurably compare them to each other.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist

3

4

Acknowledgments

I would like to thank Kalyan for his guidance through out the project. His willingness

to talk through ideas, make suggestions, and assist when needed were crucial to the

success of the project.

Additionally, I would like to thank my parents, MaryEllen and Paul, for their

constant support throughout my life. Without their continued love and encouragement,

I never would have gotten to where I am today. I would also like to thank my older

brother, Kevin, for his support.

Finally, I would like to thank Kali, Anne, and Brittany for their support over the

past year. While I may now have another BTB, I would like to thank the members of

Burton Third for having been there through thick and thin and ensuring I never was

lonely.

5

6

Contributions

We would like to acknowledge the contributions of Carles Sala and Micah Smith in

the design of the API, the open-source release, and general development of the BTB

library.

We acknowledge generous funding support from Xylem and National science

foundation for this project.

7

8

Contents

1 Introduction 19

1.1 Overview of Problems . 20

1.2 Tuning . 20

1.3 Selection . 22

1.4 Recommendation . 24

1.5 BTB . 26

1.6 Thesis organization . 27

2 Tuners and Selectors 29

2.1 Tuner . 29

2.1.1 API Changes . 29

2.1.2 User API . 30

2.1.3 Contributor API . 31

2.2 Selector . 35

2.2.1 User API . 35

2.2.2 Contributor API . 36

3 Recommender 39

3.1 Overview of recommender problem 39

3.1.1 Related Work . 40

3.1.2 Notation . 40

3.2 Methods . 41

3.3 Design . 45

9

3.4 User API . 45

3.5 Contributor API . 46

3.6 Evaluation . 49

3.6.1 Data . 49

3.6.2 Storing the results . 51

3.6.3 Evaluation of Results . 52

3.7 Results . 54

3.7.1 Performance Graphs . 56

3.7.2 Improvement Upon the Results 57

4 Current usage of BTB 59

4.1 DeepMining . 60

4.2 MIT TA2 System . 62

4.3 ATM . 65

5 Open Source Preparation 67

5.1 Increased Functionality . 67

5.1.1 Handling Categorical hyperparameters 67

5.1.2 Abstraction of Logic for Hyperparameter Transformation . . . 69

5.2 Testing . 70

5.3 Examples . 71

6 Getting contributions from experts 73

6.1 Evaluating methodological contributions 76

6.1.1 Setting benchmarks . 77

6.1.2 Evaluation Metrics . 79

6.1.3 Results of an experiment . 81

6.2 Automation . 83

6.3 Workflow for creating and merging a new method 85

7 Conclusion 87

7.1 Key Findings and Results . 87

10

7.2 Contributions . 87

A Tables 89

11

12

List of Figures

1-1 Diagram showcasing how a tuner works. Hyperparameter sets tried

previously and their scores are passed to the tuner, which proposes a new

set of hyperparameters. A new pipeline is run with the hyperparameters,

the resulting score is added to the data, and the tuning continues. . . 21

1-2 Gaussian kernel density estimator of performance on hutsof99_logis_1

for three different classification techniques: logistic regression, multi-

layer perceptron and random forest. The performance for each of the

classifiers is aggregated over tuning a variety of different hyperparameter

search spaces. 22

1-3 Diagram showing how a typical selector system works. Data pertaining

to past scores for each of the choices is passed to the selector which

outputs a choice to make. The score that results from that choice is

added to the data, and the process continues. 23

1-4 Diagram showing data used in a recommender system. We know the

performances of some solutions on existing problems, along with the

performance of a few solutions on a new problem. We can use the

known problem data to make recommendations for the new problem. 25

1-5 Diagram showing how data flows to and from a recommender system.

At each iteration, the matrix is passed to the recommender. The

recommender’s proposal is tried on the new row in an experiment, and

the matrix is updated. 25

13

2-1 A Python code snippet illustrating how to use a tuner’s user API. The

code illustrates how to use a tuner to tune a number of estimators

hyperparameter between 10 and 500 and maximum depth of a tree

between 3 and 20 for a random forest. The code snippet is given

training data 𝑋, 𝑦 and testing data 𝑋𝑡𝑒𝑠𝑡 and 𝑌𝑡𝑒𝑠𝑡. The tuner does not

require the user to store any scoring data on their end. The user only

has to call two methods after initialization, add to add new data to the

tuner and propose to receive a new recommendation from the tuner. 32

2-2 Interaction between the user API and developer-overridden methods

for the tuner class add method. 33

2-3 Interaction between the user API and developer-overridden methods

for the tuner class propose method 33

2-4 Relationship between six different tuners. Includes the developer API

functions overridden to implement the tuner. 35

2-5 Python code snippet illustrating how to use a selector alongside a tuner

to choose whether to next tune a random forest or an support vector

machine (SVM) classifier. The n_estimators is a hyperparameter for a

random forest and has the range [10, 500]. The c is a hyperparameter for

SVM and has the range [0.01, 10.0]. The code snippet is supplied with

training data 𝑋, 𝑦 and testing data 𝑋𝑡𝑒𝑠𝑡 and 𝑌𝑡𝑒𝑠𝑡. TUNER_NUM_ITER

specifies the number of iterations of tuner when a particular pipeline

(in this case only a classifier) and SELECTOR_NUM_ITER specifies the

number of iterations for the selector. 36

2-6 Interaction between user-facing API and developer overridden methods

for selector class select method . 38

3-1 Python pseudo-code snippet illustrating how to use a recommender’s

user API . 46

3-2 Interaction between user API and developer-overridden methods for

recommender class add method . 48

14

3-3 Interaction between user API and developer-overridden methods for

recommender class propose method 48

3-4 pbest at different iterations for matrix factorization and uniform rec-

ommenders on visualizing_ethanol_1 dataset 56

4-1 An illustration of how data flows through a system that uses a tuner,

such as DeepMining or TA2, which shows how score and hyperparameter

information is shared within the system. 59

4-2 Python pseudo-code snippet illustrating how DeepMining uses BTB to

score hyperparameter combinations in parallel. 61

4-3 Python pseudo-code snippet illustrating how MIT TA2 uses BTB to

yield the best possible pipeline over a series of iterations. 63

4-4 LSTM Pipeline Data Flow Diagram 64

4-5 Diagram showing how information including scores, hyperparamters,

and choices flows through ATM. 65

6-1 Histogram of a search problem with a difficult distribution. While it

is easy to perform well on this search space, it is hard to model the

distribution to consistently outperform a uniform tuner. This search

problem is searching the KNN hyperparameters described in Table 6.2

on housing_1 dataset. 83

6-2 Comparison of the best ranking hyperparameter combination given a

MLP pipeline on chscase_health_1 dataset. The grid for this search

problem had 1000 different hyperparameter sets. 84

6-3 Comparison of the best mean f1 score yielded by a pipeline tuned for a

given the KNN pipeline and the chscase_health_1 dataset. 84

15

16

List of Tables

3.1 Potential scores for three datasets A, B, C on 5 pipelines 1,2,3,4,5 . . 43

3.2 Score rankings corresponding to table 3.1 44

3.3 List of datasets used in evaluation of matrix factorization-based recom-

mender. 50

3.4 Storage of Results of recommender Evaluation 52

3.5 Maximum p_best, Number of Wins and C.I. Lower Bound Results

from Recommender Evaluation on 30 Datasets; Each Experiment Ran

20 Times . 54

3.6 Performance Increase Percentage Results from Recommender Evalua-

tion on 30 Datasets; Each Experiment Ran 20 Times 54

3.7 Statistical Analysis of Results from Recommender Evaluation on 30

Datasets; Each Experiment Ran 20 Times 55

4.1 Table of the LSTM Text pipeline’s tunable hyperparameters, ranges,

and description. 65

5.1 Example showing how the values of a categorical hyperparameter can

be mapped to a numerical representation and back 68

6.1 List of datasets used in tuner evaluation 77

6.2 The model type and tunable hyperparameters for the search problems

used in tuner evaluation . 78

A.1 User API for selectors . 90

A.2 Developer API for selectors . 90

17

A.3 User API for tuners . 91

A.4 Developer API for tuners . 92

A.5 User API for recommenders . 93

A.6 Developer API for recommenders . 93

A.7 API of Hyperparameter BTB Class 94

A.8 Results from tuner evaluation on 20 20 search spaces; Each experiment

was run 20 times . 95

A.9 Statistical analysis of results from tuner evaluation on 20 search spaces;

Each experiment was run 20 times . 95

18

Chapter 1

Introduction

In recent years, the success of machine learning (ML) has lead to an increased demand

for ML techniques in fields such as computer vision and natural language processing.

This in turn has led to a demand for systems that can help automate aspects of the

process that involve humans, such as choosing a machine learning model or selecting

its hyperparameters. These systems have become a part of the rapidly growing field

of automated machine learning (AutoML) [17], which seeks to reduce the need for

human interaction to create and train machine learning models.

In this thesis, we create a general purpose open source library, Bayesian Tuning

and Bandits (BTB), that enables the following search problems within AutoML:

tuning the hyperparameters of a machine learning pipeline, selecting between multiple

pipelines, and recommending a pipeline.

We envision the people who will interact with BTB will fall into two categories:

users and expert contributors. Users are the people who will integrate BTB into their

existing data science workflows, but will not need in-depth knowledge of the field

of AutoML in order to use the library. Expert contributors are AutoML or ML

experts who will contribute to the BTB library by writing their own novel methods

for solving the tuning, recommendation, or selection problems.

Our goals for the library are twofold: First, that the library fits within a user’s

existing workflow naturally enough that integration does not require a lot of overhead,

and second, that the three search problems are broken down into small and modular

19

pieces to give expert contributors maximal flexibility. As there is debate about different

methods, we have taken steps to ensure that the library is flexible enough to easily

swap out different methods. While the field of AutoML is growing rapidly, no existing

libraries cleanly and concisely deliver their capabilities to users while simultaneously

bridging the gap between experts in AutoML and data scientists solving real world

problems using AutoML.

1.1 Overview of Problems

The problems we choose to address in the BTB library are:

1. Tuning the hyperparameters of a pipeline to maximize a score.

2. Selecting among a series of options in order to maximize the score of the option.

3. Leveraging the performance of different pipelines on previous datasets to recom-

mend a pipeline for a new dataset.

1.2 Tuning

Tuning tackles the simplest of all search problems. It involves a fixed pipeline where

only the hyperparameters are tuned to maximize the score. For example, take tuning

a random forest machine learning model. We could choose to search for the two

hyperparameters: max_depth, the maximum depth allowed for any tree in the forest,

and n_estimators, the number of trees in the forest. We can set the ranges for search

at [4, 8], and [7, 20] respectively. For a pipeline 𝑃 that has 𝑘 hyperparameters, 𝛼1...𝛼𝑘,

and a function 𝑓 that scores 𝑃 with the specified hyperparameters, we formally define

the tuning problem as:

𝐺𝑖𝑣𝑒𝑛 : 𝑃 (𝛼1...𝛼𝑘), 𝑓(·)

𝐹𝑖𝑛𝑑 : 𝑎𝑟𝑔𝑚𝑎𝑥𝛼1...𝛼𝑘
⟨𝑓(𝑃 (𝛼1...𝛼𝑘)⟩

(1.1)

20

result 0.7proposal ...

1
1α 2α 3α 4α f(.) 1α 2α 3α 4α f(.)

0 3
4
5

0.1
0.3

1

2

1
1 3

2
3

0.5 0.9
0.1

0.8
0.2

0.5
0 2 1 0.8 0.6
1 1 5 0.3 0.7

1
0 3

4
5

0.1
0.3

1

2

1
1 3

2
3

0.5 0.9
0.1

0.8
0.2

0.5
0 2 1 0.8 0.6
1
1

1 5 0.3 0.7
5 0.2 0.73

Tuner experiment

add

Tuner

Figure 1-1: Diagram showcasing how a tuner works. Hyperparameter sets tried
previously and their scores are passed to the tuner, which proposes a new set of
hyperparameters. A new pipeline is run with the hyperparameters, the resulting score
is added to the data, and the tuning continues.

The scoring function typically calculates a desired metric via cross-validation. This

task can usually be accomplished by what is known as a black box optimization. In

this approach, :

– A meta-model is formed that identifies the functional (or probabilistic) relation-

ship between the hyperparameters and the pipeline scores.

– Scores are predicted for a series of candidate hyperparameter sets using the

meta-model.

– A specific hyperparameter set is chosen based on these predictions.

The AutoML community has developed a number of methods for meta-modeling,

including a Gaussian process-based regression and a tree-structured parzen estimator

[3]. This type of search also has many other applications, including tuning the

hyperparameters of a compiler to maximize speed [24].

Figure 1-1 shows a typical integration with a tuner. The user has a pipeline that

they want to tune, which requires a series of hyperparameter values to be specified in

order to run. At each time step, the user has a matrix of hyperparameter sets that

were tested before, along with their associated scores. The user passes this to the

tuner, which creates a meta-model and then proposes a new hyperparameter set to

try. The user sets these hyperparameters for the pipeline, fits the pipeline and records

the resulting score. The newly tried hyperparameters set and score are added to the

21

Score Increase −→

P
ro

ba
bi

lit
y

D
ist

rib
ut

io
n

Multilayer Perceptron Random Forrest Logistic Regression

Figure 1-2: Gaussian kernel density estimator of performance on hutsof99_logis_1
for three different classification techniques: logistic regression, multilayer perceptron
and random forest. The performance for each of the classifiers is aggregated over
tuning a variety of different hyperparameter search spaces.

matrix for the next iteration. The tuning process continues until a fixed number of

iterations are finished or a desired score is achieved.

1.3 Selection

Selection is the next level of search. Here, we have multiple possible pipelines, each

with their own hyperparameters that can be tuned. This search problem is complex

because we do not know 𝑎𝑝𝑟𝑖𝑜𝑟𝑖 which pipeline will yield the best score when fully

tuned. This problem essentially involves allocating resources for tuning different

machine learning pipelines.

Formally, for a set of 𝑚 pipelines (or choices) 𝑃𝑖 that each has 𝑘𝑖 hyperparameters,

we define the selection problem as:

𝐺𝑖𝑣𝑒𝑛 : 𝑃𝑖(𝛼𝑖...𝛼𝑘𝑖)|𝑖 = 1...𝑚, 𝑓(·)

𝐹𝑖𝑛𝑑 : 𝑎𝑟𝑔𝑚𝑎𝑥 𝑖; 𝛼1...𝛼𝑘𝑖
𝑓(𝑃𝑖(𝛼1...𝛼𝑘𝑖))

(1.2)

At each time step, the selector recommends the next pipeline to tune for a previously

determined number of iterations. The best score achieved as a result is fed back to the

22

choice 2
0.5

Ch
oi

ce
 1

Ch
oi

ce
 2

Ch
oi

ce
 3

Ch
oi

ce
 4

0.1
0.8
0.9
0.7

0.6

0.4
0.4
0.3

0.6
0.7

0.1
0.8

0.6
0.3

0.6

0.4
0.6
0.7
0.6
0.3

0.1 0.5

Ch
oi

ce
 1

Ch
oi

ce
 2

Ch
oi

ce
 3

Ch
oi

ce
 4

0.1 0.8
0.9
0.7

0.4
0.3

0.8

0.1
0.8

0.1

selector experiment
score 0.8

selector ...

Figure 1-3: Diagram showing how a typical selector system works. Data pertaining to
past scores for each of the choices is passed to the selector which outputs a choice to
make. The score that results from that choice is added to the data, and the process
continues.

selector, which refits and proposes the which pipeline to tune next. After a specific

choice is made, the score comes from an unknown probability distribution. Figure

1-2 shows an example score distribution for three pipeline choices. In this case, the

choices are between training a multilayer perceptron, a random forest, or a logistic

regression model to make predictions on the dataset. The figure shows the distribution

of the scores of the model given a variety of different hyperparameter combinations.

Suppose that, on the first iteration, we choose a poor hyperparameters for the logistic

regression model (the score would be far on the left of Figure 1-2). This would lead to

an inference that perhaps logistic regression is a bad choice. If we were using a naive

or greedy approach rather than a selector, we would likely rank this choice poorly.

However, we may try logistic regression with a good selection algorithm and are likely

to get a better result given the distribution. After enough iterations, the selector will

likely converge on logistic regression, the most likely to give the best score (when

properly tuned).

To aid in selection, the scores achieved for each choice are typically converted into a

set of rewards. The selection problem uses a meta-model to estimate the distribution of

a reward for a specific choice, and then chooses based on that estimation. Alternately,

it can also use a simple explore-exploit heuristic to make a choice [30].

Figure 1-3 shows how a selector is put into practice. At each iteration, a data

structure stores a mapping of each of the possible choices available to the selector

and a historical list of scores received for that choice. This is passed to the selector,

23

which selects an option from those choices. The pipeline corresponding to that choice

is picked and a preset number of tuning iterations are run. At the end of the run, a

score update is received. We add the score to our list of scores for that choice, and

continue the process. While this process is straightforward, we design a much more

user-friendly API for selection.

1.4 Recommendation

The highest level of search is recommendation [25]. In this level, we have scores for

a set of pipelines with fixed hyperparameters that have been tried on a number of

datasets (Not all pipelines may have been tried on all datasets). Given this information

and a new dataset, we aim to pick the candidate pipeline that will give the best score.

The best pipeline selected with a recommender can be further improved by tuning its

hyperparameters.

Thus recommendation proposes pipelines to new datasets by leveraging their

previous performances to similar datasets. Formally, for a set of 𝑚 pipelines

{𝑃𝑖|𝛼1...𝛼𝑘𝑖
|𝑖 = 1...𝑚} with fixed 𝑘𝑖 hyperparameters and a series of 𝑛 known datasets

{𝑑1...𝑑𝑛}, we define the recommendation problem as:

𝐺𝑖𝑣𝑒𝑛 : 𝑃1...𝑃𝑚, 𝑑1...𝑑𝑛, 𝑓(·)

𝐿𝑒𝑡 : 𝐴 ∈ 𝑅𝑛×𝑚 𝑠.𝑡. 𝑎𝑖𝑗 = 𝑓(𝑑𝑗,𝑃𝑖|𝛼1...𝛼𝑘𝑖)

𝐹𝑖𝑛𝑑 : 𝑎𝑟𝑔𝑚𝑎𝑥𝑖 𝑓(𝑑𝑗+1,𝑃𝑖|𝛼1...𝛼𝑘𝑖)|𝐴

(1.3)

These problems usually have the same goal, and share some underlying structural

elements. One example that illustrates this is that of movie recommendations. Suppose

there is a matrix that contains different people, along with their ratings of a series

of different movies. We can use this matrix to recommend a new movie to a user

given a few of their existing movie ratings. Because we are trying to achieve the

same objective —- find a movie that the user would rate highly —- and there is a

similarity between the solutions to the problems —- people with similar taste tend

to rate movies similarly —- we can leverage other users’ ratings to predict how the

24

Pe
rfo

rm
an

ce

Pe
rfo

rm
an

ce

known dataset/ pipelines

pipeline
1 2 3

d1

2
3

d
d

? ?

4

new dataset
/ pipelines

pipeline
1 2 3 4

Figure 1-4: Diagram showing data used in a recommender system. We know the
performances of some solutions on existing problems, along with the performance
of a few solutions on a new problem. We can use the known problem data to make
recommendations for the new problem.

score 0.4option 2 ...
0.5 ?
0.8 0.7

0.2
0.9

0.1
0.5

0.2
0.7

?
0.8

0.7
0.1

0.6
0.3

0.7
0.1

0.3
0.2

?
0.5

0.1
?
??????

0.5 ?
0.8 0.7

0.2
0.9

0.1
0.5

0.2
0.7

?
0.8
0.4

0.7
0.1

0.6
0.3

0.7
0.1

0.3
0.2

?

0.5
0.1
?
?????

recommender experiment recommender

1P
1d

nd
n+1d

2P ...

...

mPm-1P 1P
1d

nd
n+1d

2P ...
...

mPm-1P

Figure 1-5: Diagram showing how data flows to and from a recommender system. At
each iteration, the matrix is passed to the recommender. The recommender’s proposal
is tried on the new row in an experiment, and the matrix is updated.

new user would rate the movie. Similarly, for machine learning problems, we can

use information about how machine learning pipelines have performed on previous

datasets in order to predict which ones would be good to try on a new dataset.

Figure 1-4 illustrates how one can solve a recommendation problem. The first

figure shows the scores for each possible pipeline (on x-axis) for each dataset (different

legends). The second figure contains a new dataset and scores for a couple of the

pipelines. We want to predict the scores for the other solutions, which we can do by

leveraging the information in the first graph. We can see that the two known scores

in the second graph closely match those of dataset 2 in the first figure, so we can

extrapolate that the scores for pipelines 2 and 3 in the second graph would also closely

match those of dataset 2. Because pipeline 3 was the best for dataset 3, we could

recommend that solution for our new dataset.

Figure 1-5 shows how a typical recommender system is put to use in the context

of AutoML. An established matrix contains information about the performance of

different pipelines on datasets. We then have a new dataset for which we would like to

25

receive pipeline recommendations (added as a new row). This information is passed to

the recommender. We propose a specific pipeline to try, run an experiment evaluating

the proposed pipeline on the dataset, and receive a score. We update the matrix with

this new score and continue the recommendation process.

1.5 BTB

In this thesis, we describe Bayesian Tuning and Bandits, BTB, a new software library

that brings together these three disparate search approaches. BTB is publicly available

on GitHub1.

Data scientists and statisticians have an immense amount of knowledge when it

comes to designing meta-modeling approaches, creating newer versions of selection

algorithms, and designing effective recommender systems via matrix factorization.

Oftentimes these approaches are designed and tested outside the context of AutoML.

As the AutoML field rapidly expands [21], we imagine that state-of-the-art solutions

for each of the above search procedures will evolve, be debated, and constantly change.

The researchers developing these algorithms and models are also often separate

from the software engineers trying to search for and implement a machine learning

pipeline for their problem. The goal of our open source is to create a centralized place

where:

– researchers/experts can contribute better approaches for these search techniques

without worrying about building out an elaborate testing and evaluation frame-

work, and

– users can benefit from the performance gains of a state-of-the art-technique

without having to understand the complex statistics required to build it and

without integrating with multiple libraries.

Prior to this thesis, the library contained abstractions to solve the tuning and

selection problems. We focused on expanding and perfecting the abstractions in this
1https://github.com/HDI-Project/BTB/

26

library so that experts could readily contribute to the library and users could integrate

it into their projects. We focused heavily on user experience with the library, in order

to ensure that the search process integrates seamlessly into existing workflows. While

BTB can be used to solve the aforementioned search problems in any application, for

the purpose of this thesis we focus on its application to AutoML.

1.6 Thesis organization

The rest of this thesis is as organized as follows:

Chapter 2 explains the detailed abstractions and apis for each of the main types

in BTB. Chapter 3 explains in detail the recommender system and the implemented

types of recommenders. Chapter 4 demonstrates how easy BTB is to integrate into

existing systems through a series of example systems that use the library.

Chapter 5 discusses some of the steps that were necessary to prepare the library

for being open-sourced and accepting expert contributions. Chapter 6 covers the

contribution process and how different tuners will be evaluated against each other.

Chapter 7 summarizes the results and contributions made throughout the thesis.

27

28

Chapter 2

Tuners and Selectors

To reiterate our goals: in order for the BTB library to be broadly adopted, its

abstractions must fit intuitively into a work flow. In order for experts to contribute

to the library, the abstractions must also provide flexibility to contribute to different

parts of the library. Previous abstractions for the tuner and selector systems can be

found in [29]. In this chapter, we present the changes we made to the abstractions

over the course of this thesis, and the rationale behind them.

2.1 Tuner

The tuner proposes a new hyperparameter set that could potentially improve the

score. To do this, it first uses a meta-modeling technique to model the relationship

between the hyperparameters and the score. It then finds the space that is predicted

to maximize the score, and proposes a candidate drawn from that space.

2.1.1 API Changes

We modified the tuner API from [29] to make it simpler for the user. During integration

attempts, we noticed that the previous API required the user to store and maintain

all the hyperparameter set and their scores tried so far. In each iteration, the user

was required to call fit with all of the this data to learn a meta model, even though

29

only a few new hyperparameter sets were evaluated each time (in our case, only one

hyperparameter set). The API worked like this in order to remain consistent with

scikit-learn’s fit and predict API [6].

We found a few issues with this API:

– Too focused on meta modeling-based optimization: The API assumes that the

tuner will use a meta modeling-based approach for optimization, but this may

not always be the case.

– Creates confusion when optimizing ML pipelines: The most common use case

for this library is tuning machine learning pipelines. A user is likely to use a

fit and predict-like API for this fitting a proposed pipeline to the data. We

noticed that using a similar API for hyperparameter tuning can create a lot of

confusion.

– Not intuitive: Generally, in a traditional scikit-learn model, the user does not

add more data to the training set over time. Instead, he or she starts out with a

full dataset, calls fit once on all of the data, and then calls predict on any

new pieces of data. For tuners, however, the user almost always adds data

incrementally, as new hyperparameter combinations are tried sequentially. This

makes the scikit-learn API less than ideal.

2.1.2 User API

We modified the API to use an add and propose method. Table A.3 in Appendix A

shows the user-facing methods and attributes of a tuner. Below, we discuss a use case

for each of these methods, and describe how they serve the user.

• add: In each iteration, the user passes two lists to the tuner. The first is a

list of dictionaries representing the hyperparameter combinations that they

have tried. The second is a list of the corresponding scores for each of these

hyperparameter combinations. As new hyperparameters are tested, this continues

in an iterative fashion, where the user specifies only new hyperparameters and

30

their scores, as opposed to everything each time. The tuner updates the available

hyperparameter/score data and refits the meta-model on the resulting dataset.

This method was not part of the original API– instead, the user called fit

directly. While both apis are clean, the new API allows for a much better user

experience. It removes the overhead of requiring the user to manage the storage

of hyperparameter combinations and their scores, and it fits the end user’s work

flow naturally, because s/he updates it only with the results of the latest trial.

• propose: The user calls propose to receive a new hyperparameter set to try.

Behind the scenes, the tuner first creates a list of candidate hyperparameter

combinations. It uses the meta-model to predict scores for each of these combina-

tions. Then, it uses the specified acquisition function to choose which candidate

to propose to the user. We modified the existing API so that the user receives

the hyperparameter combination in the form of a dictionary. A dictionary is

an especially useful way to represent hyperparameters, as users can use it to

update the parameters of a scikit-learn model directly.

These two methods are for the end user only. The logic involving adding data to

the model (or using the trained model to propose a new candidate) is fixed, and these

methods will not be overridden by contributors writing their own tuners. Figure 2-1

shows a code snippet demonstrating how a user might use a tuner.

2.1.3 Contributor API

With the exception of the constructor, the methods that a contributor or developer

might override are completely separate from those that a user uses. These methods

are described in Table A.4 in Appendix A. We abstracted the data transformation

into the add and propose steps.

For this library, our goal is to get expert contributions. Commonly overridden

functions are described as follows:

• fit: The fit method gets an array of hyperparameter sets that have already

been converted into numerical values and their scores. Most modeling methods

31

1 tunables = [
2 ('n_estimators ', HyperParameter(ParamTypes.INT , [10, 500])),
3 ('max_depth ', HyperParameter(ParamTypes.INT , [3, 20]))
4]
5 tuner = GP(tunables) #instantiate a Gaussian process based tuner
6 for i in range (10):
7 params = tuner.propose ()
8 # create random forest using proposed hyperparams from tuner
9 model = RandomForestClassifier(

10 n_estimators=params['n_estimators '],
11 max_depth=params['max_depth '],
12 n_jobs=-1,,
13)
14 model.fit(X, y)
15 predicted = model.predict(X_test)
16 score = accuracy_score(predicted , y_test)
17 # record hyper -param combination and score for tuning
18 tuner.add(params , score)
19 print("Final -Score:", tuner._best_score)

Figure 2-1: A Python code snippet illustrating how to use a tuner’s user API. The
code illustrates how to use a tuner to tune a number of estimators hyperparameter
between 10 and 500 and maximum depth of a tree between 3 and 20 for a random
forest. The code snippet is given training data 𝑋, 𝑦 and testing data 𝑋𝑡𝑒𝑠𝑡 and 𝑌𝑡𝑒𝑠𝑡.
The tuner does not require the user to store any scoring data on their end. The user
only has to call two methods after initialization, add to add new data to the tuner
and propose to receive a new recommendation from the tuner.

devised by experts require numerical variables. An expert contributor would

override the existing fit method to contribute a new meta modeling technique.

An example would be fitting a Gaussian process to the hyperparameter score

data.

• predict: An expert can override the predict function in order to use the

meta-model to predict the mean score and standard deviation that would be

given to a candidate hyperparameter combination. An example would be using

the trained Gaussian process to predict the score of a given hyperparameter

combination.

• acquire: An expert can override the acquire method in order to select which

candidate to propose given a list of predictions (mean and standard deviation).

Two examples would be returning the score with the highest predicted mean, or

the one with the highest predicted expected improvement [28].

32

v v
v v 2212

2111

22

21

12

11

[]
pre-processing{key 1 : v , key 2: v }

{key 1 : v , key 2: v }

tuner.add

Figure 2-2: Interaction between the user API and developer-overridden methods for
the tuner class add method.

tuner._create_candidates

candidate 1p ... candidate 1p
1 m

candidate np ... candidate np

...

1 m

prediction 1

prediction n

{Candidate_key 1:V1
 Candidate_key 2:V2}

...

condidate index

tuner.predict

tuner.acquire

post-processing

tuner.propose

Figure 2-3: Interaction between the user API and developer-overridden methods for
the tuner class propose method

33

Figures 2-2 and 2-3 show how the contributor-written methods integrate into the

user-facing API for tuners.

Our design enables expert contributions in the following ways:

Flexibility in tuner design: Experts are allowed to contribute new meta-modeling

technique. This is very important, because new techniques are constantly being

developed and improved upon as the field of AutoML expands. Contributors are

also given control of the acquisition function, which is used to propose a solution from

a list of predictions. This is also very important, as there is little agreement in the

AutoML expert community as to whether one function consistently outperforms

another. Figure 2-4 shows how pairing a series of different modeling techniques and

acquisition functions can create a series of different tuners. The choice of the Gaussian

process (GP) meta-modeling technique versus the Gaussian copula process (GCP)

breaks the tuners into two categories. (These ideas are implemented by modifying the

tuner’s fit and predict method.)

The tuners are next split based on their acquisition function. The basic GP and

GCP-based tuners use the maximum predicted score to determine which candidate to

propose. The other tuners use maximizing expected improvement as the acquisition

function. This is implemented in the tuner classes by overriding the acquire method.

Finally, the tuners differ as to whether they include a concept of "velocity" along

with the model, only favoring the trained model’s predictions over a uniform tuner if

the velocity of the scores is large enough. The GPEiVelocity/GCPEiVelocity tuners

include this concept, and GPEi and GCPEi do not. This concept is integrated in the

tuner by calculating the velocity in fit. In predict, if the calculated velocity is not

above a certain threshold, the model defaults to using a uniform tuner.

Handling data transformations: In this design, the expert contributors don’t have

to worry about the hyperparameter data types. Most methods that experts want

to contribute to require numeric data. We do data transformations and reverse

transformations outside the core fit/predict/acquire methods, so that experts that

choose to contribute to the methods don’t have to worry about how they are handled.

34

aquisition function (.acquire) aquisition function (.acquire)

GPEiVelocityTuner GPEiTuner

GPTuner GCPTuner

expected
improvement

expected
improvement

max
score

max
score

Yes No

Gaussian
Process

Gausian Copula
Process

GCPEiVelocityTuner GCPEiTuner

Yes No

Figure 2-4: Relationship between six different tuners. Includes the developer API
functions overridden to implement the tuner.

2.2 Selector

A selector chooses from a set of discrete options by evaluating each of their past

performances. Most implemented selector types use a multi-armed bandit technique

to determine which option to select next. The selector API was established in the

ATM paper, and was not modified during this thesis [29].

2.2.1 User API

• select: The user passes a dictionary to the selector’s select method. Each key

in the dictionary corresponds to a choice available to the selector. Each value is

a time-ordered list of scores achieved by this choice. The historical score data is

first converted to rewards via the compute_rewards function. Next, bandit is

called on the resulting historical rewards data in order to make a selection. The

selected option for this time step is then returned to the user.

Table A.1 in Appendix A shows the methods a user would employ to create and use

a selector object. The user only has to keep track of a dictionary mapping each of the

choices to all of its corresponding scores. Figure 2-5 shows an example code snippet

demonstrating how a user could use a selector. Because the choices are represented as

keys of the dictionary, the user has a lot of flexibility as to which data type is used for

35

1
2 # Instantiate tuners
3 rf_tuner = GP(('c', HyperParameter(ParamTypes.FLOAT_EXP , [0.01, ←˒

10.0])))
4 svm_tuner = GP(('n_estimators ', HyperParameter(ParamTypes.INT , ←˒

[10, 500])))
5
6 # Create a selector for these two pipeline options
7 choice_scores = {'RF': [], 'SVM': []}
8 selector = Selector(choice_scores.keys())
9

10 for i in range(SELECTOR_NUM_ITER):
11 # Using score data , use selector to choose next pipeline to ←˒

tune
12 next_pipeline = selector.select(choice_scores)
13
14 if next_pipeline == 'RF':
15 # give tuning budget Random Forest pipeline
16 for i in range(TUNER_NUM_ITER):
17 params = rf_tuner.propose ()
18 model = RandomForestClassifier(n_estimators=params[' ←˒

n_estimators '])
19 model.fit(X, y)
20 rf_tuner.add(params , accuracy_score(model.predict(←˒

X_test , y_test))
21 choice_scores['RF'] = rf_tuner.y
22
23 elif next_pipeline == 'SVM':
24 # give tuning budget to SVM pipeline
25 for i in range(TUNER_NUM_ITER):
26 params = svm_tuner.propose ()
27 model = SVC(C=params['c'])
28 model.fit(X, y)
29 svm_tuner.add(params , accuracy_score(model.predict(←˒

X_test , y_test))
30 choice_scores['SVM'] = svm_tuner.y

Figure 2-5: Python code snippet illustrating how to use a selector alongside a tuner
to choose whether to next tune a random forest or an support vector machine (SVM)
classifier. The n_estimators is a hyperparameter for a random forest and has the
range [10, 500]. The c is a hyperparameter for SVM and has the range [0.01, 10.0].
The code snippet is supplied with training data 𝑋, 𝑦 and testing data 𝑋𝑡𝑒𝑠𝑡 and
𝑌𝑡𝑒𝑠𝑡. TUNER_NUM_ITER specifies the number of iterations of tuner when a particular
pipeline (in this case only a classifier) and SELECTOR_NUM_ITER specifies the number
of iterations for the selector.

each of the choices. This allows for great flexibility on the user’s behalf, as they can

represent the choices in whatever way they find most convenient.

2.2.2 Contributor API

When writing a new selector, there are three main methods a contributor would

override. These methods and their desired functionality are described in Table A.2 in

36

Appendix A. The contributor can modify the bandit’s strategy to favor more recently

chosen options, options with the highest velocity of reward, etc. The general selection

methodology is as follows: First, the selector converts the scores into rewards, as

determined by the compute_rewards function. Then, it calls bandit on the resulting

choice reward combinations to propose a choice.

• compute_rewards: The compute_rewards method takes as its input a list of

historical time-ordered score data and returns a list of rewards. The contributor

can decide how the selection option scores correspond to the rewards. For exam-

ple, if the distribution that the score comes from changes over time, it may not

be optimal to consider old score data, as it is unlikely to accurately represent the

current distribution. The contributor can then override the compute_rewards

function to consider the rewards to be non-zero for only the most recent 𝑘 points.

• bandit: In the bandit method, a dictionary is received that maps a discrete

choice to a list of rewards (the output of compute_rewards). The bandit method

proposes a choice based on the rewards associated with each of the choices.

• select: In the select method, the user passes a dictionary to the selector.

Each of the keys in the dictionary corresponds to a choice the selector can

make, while the values consist of a time-ordered list of the scores that results

from each choice. The historical score data is first converted to rewards via the

compute_rewards function. Next, bandit is called on the resulting historical

rewards data to make a selection. Finally, the method returns the selected option

for this time step to the user.

Figure 2-6 shows how the contributor API interacts with the user-facing API for

the select method. Contributors can decide how to pre-process the score data, how to

convert the score data into the concept of a reward for the bandit, and which bandit

function should be used.

37

pre-processing

...

...

...

Option

{Option 1: [score1 ...]

 Option n: [score1 ...]}

{Option 1: [score1 ...]
 Option 2: [score1 ...]

 Option n: [score1 ...]}

{Option 1: [reward1 ...]

 Option n: [rewardn ...]}

selector.compute_rewards

selector.bandit

selector.select

Figure 2-6: Interaction between user-facing API and developer overridden methods
for selector class select method

38

Chapter 3

Recommender

Over the course of this thesis, we created a collaborative filtering-based search process

from scratch. We call this a recommender, and describe it in detail in Section 3.3. We

designed the API to closely match the tuner API in our library.

3.1 Overview of recommender problem

Suppose we have fitted a number of different machine learning pipelines on a number

of datasets, and have recorded the resulting accuracy metric of each pipeline on each

dataset. The knowledge gained about the performance of a particular pipeline on

several datasets can, in some cases, be transferred to a new dataset.

For example, suppose there is a convolutional neural network that predicts whether

a certain image contains an animal. Now, suppose we have the prediction problem

of determining whether or not a certain image contains a dog. Because there is a

similarity between the two problems, the architecture that performed best on the

animal problem is likely to have high predictive accuracy for the dog problem. We

can generalize this by leveraging the knowledge we have gained from running a series

of machine learning pipelines in order to build a system which recommends a new

candidate pipeline to try for a given unseen dataset.

39

3.1.1 Related Work

Multiple research groups have explored the topic of pipeline recommendation. Re-

searchers at MIT have developed Delphi [11], a platform for machine learning that

uses a distributed system for trying a series of pipelines and a recommender system to

suggest a pipeline to the user. The recommender for Delphi uses a different methodol-

ogy to make predictions than the one described in this thesis, as it does not use matrix

factorization to reduce the space and sparsity of the matrix. The Delphi system is

also not extensible, and the recommender methodology can not be changed.

In [14], the authors use probabilistic matrix factorization to infer the data missing

from the matrix (including the new dataset for which they wish to propose a pipeline).

The recommender acquires the predictions based on expected improvement, and the

resulting system is tested on a matrix composed of various pipeline scores on a series

of OpenML datasets. This recommender system is used in a series of experiments,

and the work released pertains only to the results derived in the paper itself. This

is a methodological contribution one which can be added to our open source and be

made available to users.

3.1.2 Notation

In this section we will establish notations and naming conventions in use throughout

the system. In the recommender system, the goal is to predict which of a candidate

set of pipelines, whose hyperparameters are all fixed to certain values, will yield the

highest accuracy score. Two pipelines can have the same steps, but may differ only by

the hyperparameter values. For example, there can be two different pipelines, each of

which use principal component analysis (PCA) on the input followed by a random

forest, as long as the two pipelines have different hyperparameter values. This is

because different hyperparameter combinations can yield dramatically different results

when trained on the same dataset.

At the heart of the recommender system is the matrix that holds the known

accuracy scores of given pipelines on given datasets. This matrix will be referred to as

40

the dataset pipeline performance matrix (dpp). In this matrix, each row represents a

unique dataset and each column represents a unique machine learning pipeline. In the

matrix, the value at row 𝑖 and column 𝑗 is the accuracy score (typically calculated

using cross-validation) of pipeline 𝑖 tried on dataset 𝑗.1 If the pipeline has not been

tried on the dataset, the value is 0.

Now suppose we are given a new dataset for which we want a pipeline recommenda-

tion. We will refer to this as d_new. For d_new we create a new row in the dpp matrix

filled with zeros, to indicate that no pipeline has been tried. Throughout the recom-

mendation process, we are consistently trying new pipelines on d_new and updating its

row with the accuracy scores achieved by those pipelines. Each recommender object

has only one d_new for which it recommends pipelines. The vector representation

of the scores of the pipelines on d_new will be referred to as dpp-vector. Pipeline

performance information is stored only in dpp-vector; the dataset is not represented

as a row in dpp-matrix. In Section 3.3 we will describe the API, and in Section 3.2

we will describe the methods used for recommending.

3.2 Methods

Sparseness possess a huge problem for the recommender. Due to computational costs

associated with fitting a pipeline to a dataset and evaluating it via cross validation,

it is not feasible to try all of the possible pipelines on all of the known datasets. In

fact, each dataset will only have been tried on a small subset of the pipelines, leading

to very few non-zero entries in the dpp matrix. For example, in the matrix used in

this chapter to demonstrate the efficacy of the recommender, we had a total of 9,384

unique pipelines, and each dataset was only tried on 363 of them.

If the dpp matrix were to make recommendations directly, the results would likely

not be optimal, as the algorithm would probably only choose the dataset with the

greatest number of pipelines that overlap with the ones that are tried on d_new,

1The score can be any metric, but for the purpose of this thesis it refers to the mean f1-score
calculated during cross validation.

41

regardless of the performance of these pipelines. We can solve this problem using

matrix factorization (mf). Matrix factorization projects the matrix onto a lower-

dimensional space, reducing the dimensionality with the aim of reducing the sparsity.

We can then compare the rankings of the values in the lower-dimensional space. Below,

we present the current recommender we built.

Matrix factorization-based recommender

1. Use matrix factorization to reduce the dimensionality/sparsity of the dpp-matrix.

We use non-negative matrix factorization [13, 8] to decompose dpp-matrix into a

n-datasets×num-desired-components matrix (dpp-matrix-decomposed) as shown:

dpp-matrix ≈ dpp-matrix-decomposed ·𝐻 (3.1)

where 𝐻 is some num-desired-component𝑠× num-pipelines matrix.

2. Gather data about pipeline performances on d_new in the form of dpp-vector.

Similar to dpp-matrix, each column 𝑗 in the 1D vector represents the performance of

the pipeline corresponding to that index on d_new.

3. Use the trained mf model to project dpp-vector on the the reduced dimensionality

space yielding dpp-vector-decomposed. This can found by solving:

dpp-vector-decomposed ≈ dpp-vector ·𝐻−1 (3.2)

Where 𝐻 is the matrix calculated in Equation 3.1, found during the fit process

of the matrix factorization.

4. In the reduced space, find the matching dataset in dpp-matrix-decomposed that

is closest to the dpp-vector-decomposed as determined by Kendall-Tau distance (ie

greatest Kendall Tau Agreement). In case of a tie, choose at random from the tied

options.

In order to find the closest matching dataset, we chose to compare the rankings

of the pipelines between two datasets, as opposed to the closeness of performance

scores. Because we used matrix factorization to reduce the sparsity of dpp-matrix and

dpp-vector, we find the closest matching dataset and compare ranking in the reduced

42

space. NMF is known to have clustering-like effects, where each cluster is a column in

the reduced space and the cluster membership is determined by whichever column

has the largest value for the row [22]. By calculating the Kendall Tau agreement in

the reduced space, we are essentially comparing the relative-rankings of the reduced

pipeline (column) clusters for each dataset.

We compare rankings because we care about predicting the highest-performing

pipeline rather than the actual score of this pipeline. The matching dataset may only

compare relatively in score performance, as one of the datasets may be much harder

to accurately classify than the other. We define the matching dataset as the dataset

that has the highest Kendall Tau agreement [18]:

Kendall Tau

agreement
=

(number agreeing pairs− number non-agreeing pairs)
𝑛(𝑛− 1)/2

(3.3)

The higher the agreement is, the more that the two datasets agree on the compar-

ative ranking of the pipelines. This is important because the actual projected values

of the pipeline scores may have widely different ranges. Suppose we have 5 pipelines,

numbered 1 through 5, along with 2 datasets, B and C. We are trying to find the

dataset that most closely matches dataset A (which has been tried on pipeline 1 and

2). Suppose that dataset A is very similar to dataset C.

Table 3.1: Potential scores for three datasets A, B, C on 5 pipelines 1,2,3,4,5

Dataset Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5

A 0.5 0.6 0.7 0.8 0
B 0.9 0.7 0.8 0.6 0.5
C 0.5 0.6 0.7 0.8 0.9

Table 3.1 represents a matrix of potential scores for this scenario and Table 3.2

shows the corresponding rankings. For simplicity, we will not use matrix factorization,

and will instead compare the rankings in the space of all five pipelines.

If we were to look only at the number of times the raw rank value agrees, dataset

43

Table 3.2: Score rankings corresponding to table 3.1

Dataset Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5

A 2 3 4 5 1
B 5 4 3 2 1
C 1 2 3 4 5

B would match dataset A, as they agree 1 time and dataset C and A never agree.

Under the Kendall-Tau agreement, however, we look at pairwise agreements. Dataset

C and A agree on the following pairs:

• Pipeline 1 < Pipeline 2

• Pipeline 2 < Pipeline 3

• Pipeline 3 < Pipeline 4

• Pipeline 1 < Pipeline 3

• Pipeline 1 < Pipeline 4

• Pipeline 2 < Pipeline 4

giving a total of 6 agreements. Dataset B and A agree on the following pairs:

• Pipeline 1 > Pipeline 4

• Pipeline 2 > Pipeline 5

• Pipeline 3 > Pipeline 5

• Pipeline 4 > Pipeline 5

giving a total of 4 agreements. By the Kendall-Tau agreement, Dataset C is closest

to Dataset A. Given the dataset pipeline results, Dataset C is clearly the better option,

as the scores match perfectly for every pipeline other than Pipeline 5.

5. Compose a list of candidate pipelines for the new dataset made up of all untried

pipelines on the dataset.

6. When making predictions, rank the pipelines based on their rankings for the

matching dataset.

7. Acquire the predictions by choosing and proposing the pipeline with the highest

ranking. In the case of a tie, chose at random from the options that tie.

44

3.3 Design

The recommender system attempts to find the best pipeline for a dataset, given a set

of candidate pipelines. We have the following requirements:

dpp-matrix At the core of the recommender system is the dpp-matrix. This must be

made available to the system. Each column of the matrix is a different pipeline and

each row is a dataset. The value at 𝑖, 𝑗 is the accuracy score for pipeline 𝑗 on dataset

𝑖. It is up to the user to maintain some sort of data structure mapping the column

index to the actual pipeline that it represents. This is a valid design decision, as the

user must already possess knowledge about the pipeline that the column represents

in order to create and fill in the recommender matrix or try a specified pipeline on

d_new.

Same accuracy score: In order for the recommender system to work, the evaluation

metric used for the score must be the same across all datasets. This is because the

recommender system works by comparing the scores between different pipelines. If

the evaluation metrics differ, the scores have different maximum and minimum values,

making score-based ranking of pipelines impossible.

3.4 User API

The API for recommenders matches that of tuners as closely as possible, in order to

keep the APIs consistent and because they are used similarly. Users will likely try

each pipeline individually. Using the add method, users can incrementally add the

score for each pipeline, rather than keeping track of all the data (pipelines and scores)

and calling fit on everything. Table A.5 in Appendix A shows the recommender class

methods available to users.

• add: The user passes a dictionary to the recommender. The keys in the dictionary

are integers representing pipeline indices that the user has tried for their new

dataset. The value is the accuracy score for that pipeline on their dataset. This

method is very similar to the add method for a tuner. The recommender updates

45

1 #m = Matrix of dataset -pipeline -performances
2 #num_iterations = Number of iterations
3 recommender = Recommender(m)
4 for i in range(num_iterations):
5 pipeline_index = recommender.propose ()
6 score = result of trying pipeline index on dataset
7 recommender.add({ pipeline_index , score })
8 best_pipeline_index = recommender._best_pipeline_index

Figure 3-1: Python pseudo-code snippet illustrating how to use a recommender’s user
API

its internal state with the new pipeline-score data and refits the meta-model on

the new updated data. No external data storage is required on the user side.

• propose: The user calls propose to receive a new pipeline index proposed by

the model that may improve the score. As with the tuner, the recommender

first creates a list of candidate pipelines that haven’t yet been tried on the given

dataset. It uses the meta-model to predict scores for each pipeline. Next, it uses

the specified acquisition function to select which of these candidates to propose

to the user. While this method involves a lot of computations, the API is kept

easy-to-use for the user. It naturally fits into an iteration structure where the

user can receive a pipeline index from the recommender, try it and score it, and

then update the recommender with its score.

Figure 3-1 shows an example pseudo-code describing how the user would use the

recommender system. As we can see, the API is very clean and easy for users to use.

The user also has easy access to the best pipeline and its score, which are stored as

class attributes. Minimal code is required on the user’s part in order to integrate a

recommender system.

3.5 Contributor API

Table A.6 in Appendix A shows the recommender methods that contributors who wish

to write their own recommender can override. As with the user API, the contributor

API closely matches that of the tuner, so that experts who have contributed to one

46

type of object have a minimal learning curve when contributing to another. This also

helps keep the library consistent. The following is a list of recommender methods that

the contributor can override.

• fit: The contributor overrides the fit process to fit the meta-model to both the

dpp-matrix data composed of known pipeline and score combinations along with

a vector of pipeline scores on d_new. We abstracted this functionality into its own

method to match the general fit/predict API that is commonly used by machine

learning libraries. This way, contributors can simply implement their meta-

modeling technique as a model and call model.fit in the recommender API.

One example would be fitting a matrix factorization model to the dpp-matrix

and using that to reduce the dimensionality of both the dpp-matrix and the

pipeline-performance vector of d_new.

• predict: The contributor overwrites the predict function to use the meta-

model to rank a series of candidate pipelines. As with .fit, we abstracted

predict to its own function to match the scikit-learn practice of calling model.fit

and model.predict. The contributor uses their meta-model to make predictions.

An example would be using the relative rankings of the dataset whose pipeline

scores most closely match the d_new. We chose to have the predict function

rank the candidates rather than assigning them a raw score, because while

similar problems may be useful for predicting relative performance, they are less

likely to accurately predict the true numerical performance of a pipeline on a

dataset.

• acquire: The contributor overwrites the acquire method to select which

candidate to propose given a list of predictions. An example would be returning

the pipeline that ranks the highest according to its prediction.

Similar to the tuner, the public methods add and propose are fixed and not meant

to be overridden by contributors. This is because they include data processing and

other nuances abstracted away from the contributor. The API for the contributor

47

pre-processing

[score_0, 0, score_2]

{pipeline-index 0: score_0
 pipeline-index 2: score_2}

recommender.add

Figure 3-2: Interaction between user API and developer-overridden methods for
recommender class add method

recommender._get_candidates

[candidate-1 ... candidate-n]

[prediction-1 ... prediction-n]

pipeline-index

candidate-index

recommender.predict

recommender.acquire

post-processing

recommender.propose

Figure 3-3: Interaction between user API and developer-overridden methods for
recommender class propose method

is designed to be as simple as possible. The contributor deals only with an array of

scores for fitting. Figures 3-2 and 3-3 show how those methods that a contributor can

override interact with the methods that the user calls for a recommender.

The contributor does not have to override all of the methods. The default

get_candidates and acquire functions are likely sufficient for most recommenders.

The default get_candidates returns all pipelines that haven’t yet been tried on the

new dataset. The default acquisition function returns the index corresponding to the

maximum ranking. At a minimum, contributor should override fit to specify how

the model should be fit to the dpp-matrix, and predict to specify how it should use

the fitted model to rank different pipelines.

48

3.6 Evaluation

We evaluate the mf-based recommender against a uniform sampling method that

proposes a pipeline chosen at random from the candidate list of pipelines for each

iteration.

3.6.1 Data

Creation of dpp-matrix: In order to generate the dataset-pipeline performance

matrix, we used data gathered by a series of ATM runs using grid search to find the

best pipeline for many different datasets2. 420 datasets were used in this experiment.

Each dataset was run on roughly 600 different pipelines 3.

The data from these runs was stored in four csv files. The schema of these csv files

is described in the documentation here: https://github.com/HDI-Project/ATM/blob/

master/docs/source/database.rst.

In the raw ATM results file, the pipeline information was stored as in a string with

the model type (eg SVM, random forest) and all of the hyperparameter values for the

model. We first aggregated all of the pipelines by model type and hyperparameter

configuration. This helped us identify 19,389 unique pipelines. We assigned each

unique pipeline an index and then grouped the pipelines by dataset ID. There were

286,577 dataset-pipeline runs to begin with.

We further reduced the pipelines to a subset consisting of ones that ATM currently

supports, so that when a specification of the pipeline is given, we are able to learn a

model and predict using scikit-learn. We ended up with 9,384 pipelines.

After this selection, we found that each of the 420 datasets had been tried on an

average of 363 different pipelines. We mapped each dataset ID to a list of pipelines and

scores. From there, we constructed the dpp-matrix by filling in dataset and pipeline

performance pairs of the dpp-matrix. Where the dataset-pipeline performance is

unknown, the matrix is filled in with zeros.

2The raw data from the runs is available at https://s3.us-east-2.amazonaws.com/atm-data-store
3We are calling these pipelines, but they only consisted of a classifier

49

 https://github.com/HDI-Project/ATM/blob/master/docs/source/database.rst
 https://github.com/HDI-Project/ATM/blob/master/docs/source/database.rst
https://s3.us-east-2.amazonaws.com/atm-data-store

Ultimately, the matrix we have constructed is about 96% sparse, as each dataset

has been tried on approximately 4% of the pipelines. This matrix is publicly available

at https://s3.amazonaws.com/btb-data-store/recommender-evaluation/dpp-matrix/

Evaluation datasets: We subselected a set of 30 datasets. Table 3.3 gives the list

of these datasets. For each of these datasets, we will make recommendations and

evaluate the performance of the mf-based recommender system.

Table 3.3: List of datasets used in evaluation of matrix factorization-based recom-
mender.

Dataset Name Dataset Name

mf_analcatdata_asbestos_1 analcatdata_bankruptcy_1
AP_Endometrium_Prostate_1 auto_price_1

breast-tissue_1 chscase_health_1
diggle_table_a1_1 fri_c0_100_10_1
fri_c1_100_25_1 fri_c1_100_50_1
fri_c2_100_25_1 fri_c2_100_50_1
fri_c4_100_25_1 fri_c4_100_50_1
fri_c4_100_100_1 fri_c4_250_100_1

humandevel_1 machine_cpu_1
meta_batchincremental.arff_1 meta_ensembles.arff_1

meta_instanceincremental.arff_1 pasture_1
pasture_2 pyrim_1

rabe_166_1 sonar_1
visualizing_ethanol_1 visualizing_slope_1

fri_c0_250_50_1 witmer_census_1980_1

Experiment Setup: With the dpp-matrix and evaluation datasets at hand, we

evaluate a mf-based recommender as follows:

1. We choose 30 random datasets (named in Table 3.3) as our candidate datasets,

for which we want to find the best possible pipeline4.

2. For each dataset, we:

4The train-test splits for these datasets are available at https://s3.us-east-2.amazonaws.com/
atm-data-store/grid-search/

50

 https://s3.amazonaws.com/btb-data-store/recommender-evaluation/dpp-matrix/
 https://s3.us-east-2.amazonaws.com/atm-data-store/grid-search/
 https://s3.us-east-2.amazonaws.com/atm-data-store/grid-search/

(a) Remove the row corresponding to this dataset from the dataset-pipeline

performance matrix. We pretend that this is a new dataset, d_new.

(b) Use the remaining matrix to fit a recommender model.

(c) Use the recommender to propose a pipeline index for this dataset.

(d) Based on the pipeline index, get the string representation of the pipeline.

Parse this to create and train a machine learning model on the dataset

using ATM’s Model class.

(e) Score the model based on the mean f1-score from 5-fold cross validation.

(f) Add the score to the matrix at the 𝑖, 𝑗 location, where 𝑖 corresponds to the

dataset index and 𝑗 is the pipeline index.

3. Continue repeating steps (a) through (e) until we have proposed and evaluated

50 pipelines. These correspond to 50 iterations.

4. Store all of the recommendation/score data for later evaluation.

Together, steps 2, 3, and 4 make up one trial. In order to assure confidence in

the results and assess statistical significance, we run 20 trials on each dataset. Each

experiment is made up of 20 trials run on a particular dataset.

3.6.2 Storing the results

We record the results of the experiments for each dataset-recommender pair in a

separate csv file. The first row in the csv file is the first pipeline proposed by the

recommender for an experiment. The second row is the resulting average f1-score of

this pipeline on the dataset after 5-fold cross validation. The third row is the standard

deviation of the f1-score for the pipeline calculated from the cross-validation. The

columns continue in this manner for each of the trials. Each row in the csv represents

an iteration along with the results for all of the trials at that iteration. Table 3.4

shows how this csv format translates into a table of results. Storing the results in this

format means that we can easily use the Pandas Python library [20] to turn the CSV

51

file into a DataFrame for computations. As we are storing the mean and standard

deviation of the f1-score for each pipeline on the dataset, we have a lot of flexibility

around how we analyze and use the results.

Table 3.4: Storage of Results of recommender Evaluation

trial_0_
pipeline_
index

trial_0_
mean_f1

trial_0_
std_f1

trial_20_
pipeline_
index

trial_20_
mean_f1

trial_20_
std_f1

trial_0_
pipeline_
index_
iteration_0

trial_0_
mean_f1_
iteration_0

trial_0_
std_f1_
iteration_0

trial_20_
pipeline_
index_
iteration_0

trial_20_
mean_f1_
iteration_0

trial_20_
std_f1_
iteration_0

trial_0_
pipeline_
index_
iteration_
50

trial_0_
mean_f1_
iteration_
50

trial_0_
std_f1_
iteration_
50

trial_20_
pipeline_
index_
iteration_
50

trial_20_
mean_f1_
iteration_
50

trial_20_
std_f1_
iteration_
50

We use a standard naming scheme of recommender-typ_dataset-name_results.csv

to make it easy to find the results for a specific experiment. The results are stored in

a public S3 bucket 5. This open-sources our results, and allows others to use the data

that we have generated for their own experiments.

3.6.3 Evaluation of Results

We compare our matrix factorization recommender against a uniform recommender

that proposes each pipeline with equal probability.

For an experiment on a dataset 𝑑 that has a recommender 𝑟, we define the

best-so-far metric pbesti
𝑑, or the score of the best-performing pipeline by iteration

𝑖 as:

pbesti
d =

∑︁
𝑡

𝑚𝑎𝑥0≤𝑗≤𝑖𝑓(𝑝
𝑡
𝑖, 𝑑)

𝑡
(3.4)

where 𝑓(.) is the cross-validated accuracy score when pipeline 𝑝𝑡𝑖 is evaluated on

5https://s3.amazonaws.com/btb-data-store/recommender-evaluation

52

 https://s3.amazonaws.com/btb-data-store/recommender-evaluation

dataset 𝑑. The accuracy metric used in our experiments is f1-score. 𝑝𝑡𝑖 is the pipeline

proposed by the recommender at iteration 𝑖 in trial 𝑡 for this dataset. Thus, pbesti𝑑

gives the best score achieved by the recommender at iteration 𝑖, averaged across all

the trials.

Evaluation Metrics

In order to compare two recommender methods, we compare their pbesti
𝑑 scores

using a series of metrics.

• Average pbesti
𝑑 at iteration 5, 10, 25, 50: We take the mean of all the

experiments (across different datasets) for each recommender type. Because the

same accuracy metric (in our case, the f1-score) is used across datasets, this

average effectively compares the overall performances of the two recommenders.

• Wins for average pbesti
𝑑 at iteration 5, 10, 25, 50: We also count the

number of time that each method “won.” To do this, we take each dataset at a

specified iteration, check which pbesti
𝑑 is higher, and simply tally the "wins"

for each method.

• Average percentage difference in pbesti
𝑑 at iteration 5, 10, 25, 50: In

addition to comparing the mean pbesti
𝑑, we also calculate the mean percent-

age difference in pbesti
𝑑, in order to quantitatively measure any performance

increase. This metric enumerates any potential performance gain that would

result from using a matrix factorization recommender instead of a uniform

recommender. We calculate the percentage difference in pbesti
𝑑 for a dataset

between uniform and matrix factorization recommender (1− mf-pbesti𝑑

uniform-pbesti𝑑
), and

then average over all datasets.

• 90% Confidence interval around average pbesti
𝑑 for iteration 50: By

leveraging the scores from all of the trials, we can calculate a 90% confidence

interval around the calculated pbesti
𝑑 at iteration 50 for a given dataset. We

then average this across all 30 datasets. By comparing the size of the confidence

53

interval, we can gauge how consistent the system is when predicting and how

reliable the results are for the final iteration.

Statistical Significance: As we are only comparing two recommender, we chose

to use a Wilcoxon signed-rank test to determine the significance of our results [16].

The result of this test will allow us to accept or reject the null hypothesis that the

results for the matrix factorization and uniform recommender come from the same

distribution. For the pbesti
𝑑 and 90% Confidence Interval pbesti𝑑, we apply a

Wilcoxon significance test to the results of these metrics on each dataset for the two

recommenders.

3.7 Results

Table 3.5: Maximum p_best, Number of Wins and C.I. Lower Bound Results from
Recommender Evaluation on 30 Datasets; Each Experiment Ran 20 Times

Lower Bound
Metric Max p_best # Wins of 90% C.I.

iteration 5 10 25 50 5 10 25 50 50

Uniform 0.66 0.70 0.74 0.77 18 1 0 0 0.75

Matrix Factorization 0.66 0.73 0.77 0.79 12 29 30 30 0.78

Table 3.6: Performance Increase Percentage Results from Recommender Evaluation
on 30 Datasets; Each Experiment Ran 20 Times

Metric % Performance Increase

iteration 5 10 25 50

Uniform N/A N/A N/A N/A
Matrix Factorization +2.4% +6.8% 7.6% 5.1%

Table 3.5 shows the results of comparing the uniform and matrix factorization

recommenders, which were evaluated on 30 datasets. The matrix factorization recom-

mender always outperforms uniform. The matrix factorization, on average, leads to

54

Table 3.7: Statistical Analysis of Results from Recommender Evaluation on 30 Datasets;
Each Experiment Ran 20 Times

Metric Max p_best Lower Bound of 90% C.I.

iteration 5 10 25 50 50

Wilcoxon p-value 0.81 3.9× 10−6 1.7× 10−6 1.7× 10−6 1.9× 10−6

Wilcoxon statistic 221 8.0 0 0 1.0
Significant No Yes Yes Yes Yes

5.4% performance increase in the maximum f1-score with its proposed pipelines. After

running a Wilcoxon signed-rank test, we get a significantly small p-value <0.05; thus,

we can conclude with high probability that the results are statistically significant.

When comparing results across iterations, we can see that 10 iterations is approxi-

mately the point at which using a matrix factorization recommender pays off. At 5

iterations, because there is not enough pipeline performance data to aid in predicting

good pipelines, the matrix factorization recommender is configured to propose random

candidates. Between 10 and 25 iterations, the results are marginally better, and by the

50𝑡ℎ iteration the results are almost 10% better. We ran a signed Wilcoxon significance

test on the pbesti
𝑑 results for each dataset between each pair of these iterations

and found that the differences in results were all significant (from iteration 5 to 10:

𝑝− 𝑣𝑎𝑙𝑢𝑒 =1.73× 10−6 , statistic=0.0; from iteration 10 to 25: 𝑝− 𝑣𝑎𝑙𝑢𝑒 =1.73× 10−6

, statistic=0.0; from iteration 25 to 50: 𝑝− 𝑣𝑎𝑙𝑢𝑒 =1.73× 10−6 , statistic=0.0).

We compare the lower bound of a 90% confidence interval of the maximum f1-

score of a pipeline proposed during an iteration of the experiment. Similar to the

average maximum f1-score proposed by the recommender, the matrix factorization

recommender performs about 4% better than uniform. As we can see, when we

compare the lower bond of the confidence interval to the average (0.77 to 0.79), the

results are very consistent and we are very confident that the average maximum

f1-score will be around 0.79.

55

0 10 20 30 40 50
0.40

0.50

0.60

0.70

Iteration

p
b
e
s
t

visualizing_ethanol recommender Results

Matrix Factorization Uniform

Figure 3-4: pbest at different iterations for matrix factorization and uniform recom-
menders on visualizing_ethanol_1 dataset

3.7.1 Performance Graphs

Figure 3-4 shows the pbest (across trials) for specific iterations during an experi-

ment for the visualizing_ethanol dataset. On this dataset, the matrix factorization

recommender significantly outperforms the uniform recommender. For the first 5

iterations, the pbest between the matrix factorization recommender and the uniform

recommender are very comparable. The pbest for both recommenders grows rapidly in

the first few iterations as each chooses randomly. After a certain number of iterations,

it becomes likely that the matrix factorization-based recommender will propose a

pipeline that will perform well on the dataset. By iteration 50, there is a difference of

about 0.05. This also explains why the uniform model performs quite well in general:

It can achieve reasonably high accuracy without needing to learn anything about the

matrix of pipeline performances.

56

3.7.2 Improvement Upon the Results

According to our evaluation metrics, the matrix factorization recommender significantly

outperformed the uniform-based recommender. While the results were good, the

dataset pipeline performance matrix is still very sparse (only around 3.8% complete)

and we believe that a denser matrix would help improve the performance of the matrix

factorization recommender.

During our experiments, we saved the f1-scores of each pipeline that was tried on a

dataset, along with the pipeline index and the dataset. We can use this data to fill in

more of the dpp-matrix, to further improve upon the results that the recommender

system gives. We added the data from our initial experiment results, a uniform

recommender tried on about 50 datasets and the matrix factorization recommender

tried on about 30 datasets.

When we used these results to fill in the dpp-matrix, the average number of

pipelines that each dataset has been tried on grew from approximately 363 to 515,

which increased the density of the matrix by about 50%. After enough iterations of

the evaluation have passed, the matrix will be much denser, even though there will

likely be overlap between the proposed pipelines.

We chose not to integrate dataset-pipeline-performance results during the experi-

ment, in order to keep the results consistent over multiple trials of the same experiment.

This would make the trials non-independent, as later trials would use information

from earlier trials.

57

58

Chapter 4

Current usage of BTB

In order to demonstrate the BTB library’s usability and flexibility, we cite its use in

three different systems. The first system, DeepMining, uses a tuner to tune a given

machine learning pipeline for a dataset and parallel processing to evaluate pipelines

faster. The second system, MIT TA2,1 uses a tuner to generate the best machine

learning pipeline possible for a specific dataset within a time limit. To make sure a

pipeline is always present, the system uses a tuner to generate progressively better

pipelines until a set time. The third system, ATM, uses both tuners and selectors

to pick the best classifier for a dataset. The system runs in parallel, with multiple

workers using tuners at the same time. In this chapter we will describe each of these

systems, briefly highlighting how they use BTB.

1MIT TA2 is a system developed by MIT and Feature Labs for a DARPA D3M program [27]

TA2/DeepMining
ATM pipeline model search logic Tuner

model score

update hyperparameters

add hyperparameters/score

proposed hyperparameters

Figure 4-1: An illustration of how data flows through a system that uses a tuner, such
as DeepMining or TA2, which shows how score and hyperparameter information is
shared within the system.

59

4.1 DeepMining

DeepMining is an open-source, end-to-end system that allows users to easily com-

pose and tune machine learning pipelines for a specified dataset.[1]. The system

is publicly available at GitHub.2 Users specify a dataset, composed of labeled

data, and a pipeline, composed of an ordered set of operations that they wish to

tune. These operations can be standard library functions (for example, fitting a

𝑠𝑘𝑙𝑒𝑎𝑟𝑛.𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒.𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟), or custom functions, such as a user-

written Gaussian blur function. For each step in the pipeline, the user specifies the

hyperparameters, as well as their respective ranges. Users can also use any of a

series of pipelines pre-written by the library maintainers, such as a traditional image

pipeline. Once they specify their dataset and pipeline, DeepMining tunes the specified

hyperparameters in order to maximize the performance of the resulting pipeline. The

library also uses a variety of scoring methods, including Bag of Little Bootstraps, that

use sampling methods to estimate the score of the pipeline.

Integrating with BTB: The original DeepMining library already contained logic

for searching over the hyperparameter space in order to tune the pipeline [2]. However,

this logic was buried inside the search class and not modularized. Switching the

tuning algorithm (e.g. from a Gaussian process to a Gaussian copula process) was

not easy, and required working around arguments only relevant to the tuning process

throughout multiple parts of the system. Likewise, adding a new tuning methodology

was complex and required rewriting core DeepMining functions.

DeepMining was refactored in the following ways:

– Logic was added to create, update, and fit pipelines, and to predict using a fitted

pipeline to a separate library called MLBlocks.

– Tuning logic was removed and replaced with BTB integration. Inside the

searching logic, one needs to call tuner.propose() to get a candidate set of

hyperparameters, and tuner.add() to add the hyperparameters sets and their

score.
2https://github.com/HDI-Project/DeepMining

60

https://github.com/HDI-Project/DeepMining

1 def score_hyperparams(pipeline , hyperparams):
2 pipeline.set_hyperparameters(hyperparams)
3 score = pipeline.score()
4 return hyperparams , score
5
6 tuner = Tuner ()
7 pipeline = pipeline object
8 num_parallel = number of parallel pipelines to score
9 for i in num_iterations:

10 candidates = tuner.propose(num_parallele)
11 candidates , scores = map candidates to score_hyperarams(←˒

pipeline , candidate)
12 tuner.add(candidates , scores)
13 tuner._best_score # score
14 tuner._best_hyperparams #hyperparameters

Figure 4-2: Python pseudo-code snippet illustrating how DeepMining uses BTB to
score hyperparameter combinations in parallel.

– DeepMining allows users to score pipelines in parallel. BTB is flexible enough

to accomodate this– it can be specified to propose multiple candidate sets at a

time, which can then be tried in parallel. The resulting data can then be added

back to the tuner, after which the search continues.

BTB helps to greatly simplify the DeepMining process’s searching logic, and using

BTB makes it easy to switch tuning algorithms. If new tuners are added to BTB,

users can implement them in DeepMining without altering any of the DeepMining

code.

Optionally, the tuner can be used with gridding in order to ensure that each

combination of hyperparameters is only tried once. This prevents the tuner from

getting stuck and proposing the same combination for multiple iterations. It also works

in parallel: the candidates are created as a group, and the tuner ensures that none of

them have been previously tried by checking whether they share the same grid spot

with any of the pre-tried hyperparameter combinations. Each of the hyperparameter

combinations is then tried in parallel. The hyperparameter/score combination is

returned, and the results are concatenated together in a simple map/reduce. tuner.add

is called with the list of candidates and scores, which adds them to the training data

and refits the tuner. In this way, no concurrency issues arise. Figure 4-2 demonstrates

how DeepMining uses BTB.

61

4.2 MIT TA2 System

The MIT TA2 system, which was built collaboratively by MIT and FeatureLabs,3 is

MIT’s submission to DARPA’s Data-Driven Discovery of Models Program, or D3M.

D3M aims to allow non-experts to quickly and easily create machine learning models

[27]. Systems will be given an unknown data set and a problem and must build the

best possible pipeline solution on the fly. This competition breaks the problem into

three tiers. TA1-level efforts create state-of-the-art primitives, including classifiers,

regressors, imputers, scalers, and featurizers. TA2 is an end-to-end system which,

when given a dataset of an unknown type, will construct the optimal pipeline using

TA1 primitives, and produce a pipeline that can make predictions on new data points.

TA3 teams focus on building an intuitive and useful UI on top of the TA2 system.

The BTB library was integrated with MIT’s TA2 system.

Importance of Tuning: In the D3M competition, the MIT TA2 system will be

given only a dataset and a problem type (i.e. classification, regression, etc.). The

system must determine the data type and construct the best possible pipeline for

that combination on the fly. As the system is only allowed a certain amount of

computational resources and running time, a tuner is very useful in this situation,

because it can continue to tune the hyperparameters of the chosen pipeline until time

runs out. As we do not know anything about the dataset ahead of time, and datasets

can vary widely, it is impossible to pick a good hyperparameter combination for each

pipeline that would work on all possible datasets. For example, for a random forest

classifier run on a single table of features, a certain number of trees might be ideal for

one dataset, but cause the model to overfit for another. In situations like this, the use

of a tuner is critical to ensure that the pipeline performs as well as possible.

Differences from DeepMining: The TA2 system has slightly different goals than

DeepMining. DeepMining gives the user complete control over the pipeline, the scoring

methodology, the parallelization, and the tuning method. TA2, on the other hand,

has to determine all of this by itself, with a constrained set of computational resources

3https://www.featurelabs.com/

62

1 pipeline = Pipeline ()
2 max_score = 0
3 tuner = Tuner(pipeline.get_hyperparameter_ranges ())
4 for i in num_iterations:
5 tuner.add(scores , hyperparameters)
6 hyperparameters = tuner.propose ()
7 pipeline.set_hyperparameters(hyperparameters)
8 pipeline.fit(x, y)
9 score = pipeline.cv_score ()

10 if score > max_score:
11 max_score = score
12 yield pipeline

Figure 4-3: Python pseudo-code snippet illustrating how MIT TA2 uses BTB to yield
the best possible pipeline over a series of iterations.

and in a limited amount of time. Because of this, MIT TA2 keeps each pipeline that

outperforms the previous best pipeline, as the system may time out before the next

tuning iteration completes. This is critical especially for deep learning-based pipelines,

as training and cross-validation take a long time. In these situations, the tuner may

not get through very many iterations before the timeout is reached.

Integration with BTB: Our current version of MIT-TA2 is similar to DeepMining

in that it has a pipeline class that exposes hyperparameters and their ranges. Here, all

pipelines are hard-coded with the logic that creates and tunes them. The evaluation

metric is chosen based on the specifications given, and the pipeline is trained and

evaluated accordingly.

LSTM Pipeline Example: A pipeline is composed of multiple steps, and how a single

tuner can be used to tune the hyperparameters of all the steps simultaneously. In order

to demonstrate this, we now describe an LSTM[15] pipeline for classification/regression

on a text dataset used by the MIT TA2 system.

– Steps and architecture: We used a Python library called Keras [7] to imple-

ment the neural network based on an existing architecture for text classifica-

tion/regression [5]. Figure 4-4 shows the overview of the architecture.

– The first step is padding each of the texts so that they are the same length.

– Next, we embed the texts into a vector by using the top 𝑁 words. (For

example, the most common word is a 1, second most common is 2, etc.)

63

input
tokenizer padding Embedding Dropout

ouput
labelDenseLSTMmax poolingConv 1D

Figure 4-4: LSTM Pipeline Data Flow Diagram

– We transform the text into a vector by letting the 𝑖𝑡ℎ word be the number

that word corresponds to (if it is in the top 𝑁 words), or else 0.

– Now that we have featurized the text, we can use the resulting feature vector

to train a neural network. The neural net is composed of 5 layers. The first

layer is a dropout layer, to prevent overfitting. The second layer is a one-

dimensional convolutional layer, followed by a max pooling layer mapping

the region of text to general trends. The result is inputted into an LSTM

block. Finally, the LSTM block’s output is fed into a densely-connected

layer which outputs the prediction for the input.

– Hyperparameters: As shown in Table 4.1, there are hyperparameters for

different steps in the pipeline. BTB is completely abstracted away from the role

of particular tunables in the pipeline, and only focuses on finding the value of

each that will maximize the score. Thus, we can use BTB to tune multi-step

pipelines. In this example, num_top_words belongs to the first step in pipeline,

the tokenizer. The embedding_size is used in the third step of the pipeline,

the word embedding. dropout_percent is used in the first layer of the neural

net, to specify what percentage of the neural network units should be dropped

out. The conv_kernel_dim specifies the size of the convolutional kernel for the

one-dimensional convolutional layer in the neural net. pool_size is used for the

max pooling layer of the neural network.

This pipeline was evaluated on the 30_𝑝𝑒𝑟𝑠𝑜𝑛𝑛𝑒 dataset, which is a binary classifi-

cation problem. The resulting model had a 0.619 f1-score. When pipeline performances

were compared, it was tied for second place out of 11 teams.

64

Table 4.1: Table of the LSTM Text pipeline’s tunable hyperparameters, ranges, and
description.

Hyperparameter Type Range Description

num_top_words Int [1000, 40000] The number of top words to use for the
tokenizer preprocessing.

embedding_size Int [100, 500] The size of the feature vector after
embedding.

dropout_percent Float [0.1,0.75] The percentage of the training data that
should be dropped in the dropout layer.

conv_kernel_dim Int [3,10] The size of the kernel for the 1D
convolutional layer.

pool_size Int [2, 10] The number of units to do a max pooling
over.

Tuner A

Selector

Tuner B

model A

model B

hyperparametersscores

scores

Model A or B

performance score

hyperparameters

performance score

Figure 4-5: Diagram showing how information including scores, hyperparamters, and
choices flows through ATM.

4.3 ATM

ATM implements a distributed, collaborative, and scalable system for automated

machine learning [29]. The library 4 is open source and allows users to select among

and tune machine learning pipelines in parallel. We showcase it here to describe how

selectors, along with tuners, can be used in practice.

Overview of System

The goal of the ATM system is to select and tune a classifier from a series of potential

classifiers in order to maximize the model score. Each potential classifier has a set

machine learning model type and a set of fixed hyperparameters, along with a set of

tunable hyperparameters, each of which has a specific range.
4https://github.com/HDI-Project/ATM

65

https://github.com/HDI-Project/ATM

ATM uses a selector to determine the allocation of resources. Each of the classifiers

is tuned by a different tuner, and each of the tuners is tuned by a different worker

instance. Thus, multiple different classifiers are being tuned in parallel with different

workers. The results are reported back to ATM and stored in a database. This

example shows the versatility of the BTB library, as it can be used in parallel by

multiple workers. Figure 4-5 shows a higher-level view of how ATM works.

66

Chapter 5

Open Source Preparation

BTB was released publicly along with ATM [19]. Before fully open-sourcing BTB

and allowing for contributions from outside developers, we fleshed out the system in

order to ensure maximum functionality.

5.1 Increased Functionality

The goal is for BTB to be adopted widely and eventually regarded as the top library

for hyperparameter tuning and model selection. In order to achieve this goal, BTB

must be able to tune a wide variety of hyperparameter types.

5.1.1 Handling Categorical hyperparameters

In its previous state, BTB supported both numerical and categorical hyperparame-

ters. However, it could only tune the numerical values, and would propose the same

categorical value over and over.

Difficulties: Adding support to tuning categorical hyperparameters poses non-trivial

challenges. While these parameters come from a discrete space by definition, they

must be mapped onto a continuous space in order for most tuners to work properly.

A naïve solution would to be to create a list of the possible categorical hyperpa-

67

rameters and map their value to the list’s index, turning each categorical value into a

numerical value. However, a categorical hyperparameter’s values are definitionally in-

dependent of each other, and when modelling this space using a Gaussian process tuner,

we assume dependence between them. For example, the assumption that a good per-

formance by the categorical hyperparameter at index 4 would indicate a likelihood of a

good performance at index 3 or 5 would be invalid, as the categorical hyperparameters

can be in an arbitrary order. Thus, this approach would yield less-than-optimal results.

Transforming Categorical Values in Numerical Space: We represent each of

the values of a categorical hyperparameter using the average of the scores given for

the specific hyperparameter value. This means we have a valid reason to assume

that values located near each other in this new numerical space will perform similarly.

Table 5.1 gives an example of how to represent the categorical values. It also shows

how the tuner-proposed values are mapped back to their categorical hyperparameter.

Table 5.1: Example showing how the values of a categorical hyperparameter can be
mapped to a numerical representation and back

Categorical Value Model Score

True 0.5
False 0.4
True 0.7
False 0.3

Categorical Value Numerical Representation

True 0.6
False 0.35

Tuner Numerical Choice Categorical hyperparameter Value

0.7 True
0.1 False
0.5 True

In this representation, if each of the categorical values is mapped to the average

68

of the score for that value, each value is closest numerically to the categorical value

that averaged the most similar score. Therefore, if each categorical value is close to

similar-scoring values, we have a valid ordering on the hyperparameters, and we can

assume values near each other in the numerical space will perform similarly. While

the variance of the other parameters also influences the score, the assumptions that

we can make about predicting the score for a given hyperparameter value are much

more valid than the previously stated naïve approaches.

5.1.2 Abstraction of Logic for Hyperparameter Transforma-

tion

In order to keep the tuner class as clean as possible and reduce bloat, we abstracted

out the logic for hyperparameter transformation. Now each hyperparameter type

has its own class, within which it specifies how it should be transformed and inverse-

transformed. Certain types of hyperparameters must be transformed before a meta-

modeling technique can be fit to the data. For exponential hyperparameters, for

example, we search not for the hyperparameter value, but rather for the correct

exponent. We map each hyperparameter to its logarithm, and search for the right

value over that space. For categorical variables, we use the technique described above

to map the hyperparameters to numerical values to search over.

API: Table A.7 in Appendix A shows the API for the Hyperparameter class. The

API uses the same type of fit_transform and inverse_transform functions that

scikit-learn uses. This makes it easy for new users to learn, as they have seen the

design pattern before. Each Hyperparameter type is responsible for how the type

should be mapped to a numerical space to search over or be modeled during the

tuner’s fit and predict process. It is also responsible for determining how to take

a numerical value and map it back to a the hyperparameter it represents. Lastly,

tuners can be used with gridding in order to avoid trying the same or extremely

similar sets of hyperparameter combinations multiple times. Each hyperparameter

69

is responsible for determining how to map its search space to a specific number of points.

Extensible: If contributors want to add support for new hyperparameter types, or

add a new methodology for transforming a hyperparameter to the numerical space,

the Hyperparameter class is easily extensible – the contributor only has to define

the constructor (based off a template), fit_transform, and inverse_transform.

This allows contributors to easily add their own way of dealing with categorical

hyperparameters, for example.

These hyperparameter objects are used by the tuners. The overall flow of tuners

was changed so that add and propose don’t need to be modified by contributors

creating their own tuners. The add and propose methods deal with taking in/re-

turning the hyperparameter in a human-readable format (dictionary mapping names

to values). These two methods deal with transforming and inverse-transforming the

hyperparameters, and passing the transformed values to fit and predict. They are

completely abstracted and can be treated interchangeably – internally, a contributor

who wishes to write their own tuner only has to deal with the hyperparameters as

vectors of numbers. As tuner algorithms are generally just complicated statistical

models, this is very useful, as the contributor doesn’t have to worry about what to

do with strings, Booleans, or other data types, and can focus on applying the best

statistical formulae.

5.2 Testing

In order to prepare for outside contributions, we built out a rigorous testing environ-

ment. As we cannot merge a contributor’s code without first ensuring it doesn’t break

anything in the library, there must be a series of unit tests that assess the functionality

of the entire library. At each pull request, the test suite can be run in order to ensure

that the proposed change or addition does not break any existing functionality. We

built out unit tests for each of the classes and subclasses, to ensure that there was full

code coverage over the entire library. We integrated Travis Continuous Integration

70

1 with the library, which provides feedback about whether or not each pull request

breaks any of the tests. It is run on every commit, and provides insurance that the

master branch is always stable.

5.3 Examples

In order for users to find implementation simple, they must understand how to use

the library and why it is helpful. In addition to documentation explaining this, we

added three different examples on which users can base their own implementations.

The first example uses a tuner to show how we can tune the parameters of a

Rosenbrock function2 to find its minimum value. This example shows how tuners can

be useful outside of the machine learning community. Additionally, since this problem

requires searching for a minimum and the tuner always tries to maximize the output,

we show how the tuner can still be used in this case. By negating all of the scores, we

turn the minimization problem into a maximization problem.

The second example involves tuning the hyperparameters of a random forest trained

on the MNIST dataset [10]. MNIST is a popular machine learning training dataset,

composed of handwritten digits labeled with their values. This example illustrates

how tuning can be used on to boost accuracy on any machine learning pipeline, even

without a full end-to-end system.

Our final example combines a tuner and a selector. This example uses a selector

to determine whether to tune a random forest or a SVM pipeline next. Once again,

this model is trained on the MNIST dataset. This example shows how combining a

selector with a tuner can make the end result even more powerful. Additionally, these

examples show how integrating a tuner/selector into an existing system, or building

one from scratch, is not complicated and does not require a lot of code.

1https://travis-ci.com/
2A Rosenbrock function has a hard-to-find global minima residing in an easy-to-find valley [23].

71

https://travis-ci.com/

72

Chapter 6

Getting contributions from experts

While the existing BTB package includes a set of powerful pre-written methods, in

order for the library to remain state-of-the-art, it must allow for contributions from

AutoML and ML experts. Making the library amenable to such contributions is

more complicated than most traditional Open Source projects, and has inspired the

following additional goals:

Goal 1: Ensure that it is easy to write new methods We make sure that it is

easy for contributors and experts to write new methods by giving them the following

three things:

• Clear well scafolded abstractions for contributions: Using a well-defined

API, we expose the key methods we imagine experts are most likely to want

to change. For example, experts in AutoML often disagree about the meta-

modeling technique and the acquisition functions. For each of the search tech-

niques, we have broken the process down into methods, which we imagine they

want to vary, with clear documentation of their inputs and outputs. They can

also base their new methods off of a standard template.

• Preprocessing: So that experts can better focus on developing and creating

new versions of key methods, we have abstracted away all the preprocessing

of tunable hyperparameters. The methods they want to override only require

simple numeric data and data structures they are familiar in using. We provide

73

all the additional routines, such as handling, searching for the scale over an

exponential range, or transforming categorical variables into numeric values

using a specific transformation.1

• Easy to use contribution integration framework: We make use of existing

GitHub 2 infrastructure to enable contributions, and provide clear instructions

on how to contribute. Contributors can integrate new methods in the form

of pull requests. GitHub comments can be used if any additional follow-up is

needed from the contributor. This process is transparent to maintainers, users,

and contributors alike.

Goal 2: Maintain and ensure package stability To maintain package stability

as new contributions come along, we have implemented the following additional

frameworks:

• Using a continuous integration testing framework: Before a contributor’s

pull request containing a new tuner is integrated, the entire suite of tests for the

package is run on the pull request. This will prevent users from writing a tuner

that somehow breaks a different section of the package.

• Naming Conventions: Contributors must follow specific naming conventions

when updating methods. For example, if they wish to contribute a tuner, they

name their new tuner method as MyTuner.py and put it in the the tuning folder.

• Unit Testing: Contributors are required to write a basic series of unit tests

based off of a template in order to test the specific behavior of the newly

contributed method. They are also required to put them in MyTunerTest.py

and in the tuning subdirectory of the test folder.

• API Compliance Testing: We envision a general-purpose API testing func-

tionality that would test the functionality of all methods and their compliance.

1We imagine some experts can contribute new transformers as well.
2https://github.com/

74

https://github.com/

Goal 3: Ensure code quality for new tuners: This is best achieved by having a

set of standards and guidelines for code quality and style for any and all contributions.

This can be achieved with two techniques: enforcing a single style guide over the entire

packages and any contributions to it and using an automated code review tool for any

and all contributions to ensure code quality.

For the BTB package, we chose to enforce the PEP8 style guide for Python [26].

This style guide ensures that code is readable, as it claims in general that code is read

more than it is written.

Goal 4: Be able to evaluate the performance of contributions: A comprehen-

sive evaluation mechanism is vital for attracting expert contributions. Unlike regular

software engineering additions, method-related contributions require answering an

additional question: “How good is this new method at achieving the end goal?” (In

our case, this goal is optimizing machine learning pipelines.) Typically, experts create

a new method, evaluate it extensively across several datasets, and summarize them in

a paper [12] [4]. We imagined that this could be provided as a service, and that the

workflow would look as follows:

– Experts create a new core method, test it locally on different datasets and do a

pull request.

– After the pull request, we would test their contribution using CI, and for API

compliance.

– We can then optionally review their code and provide feedback to ensure code

quality.

– Once these three requirements are fulfilled, we will run a comprehensive eval-

uation across several datasets, and provide a comprehensive summary of how

well their method performs against the existing ones in the library. This is

completely automated and standardized.

We envision that enabling automatic evaluations across several datasets would

motivate the experts – who, more often than not, are not software engineers – to go

75

through what may seem like an arduous process in order to contribute.

The first three goals are standard software engineering practice. For the rest of

this chapter, we will focus on evaluations of a newly contributed methods and how

they work, using the example of a newly contributed tuner.

6.1 Evaluating methodological contributions

In this section, we will use methodological contributions for tuners as an example.

When an expert contributes a new tuner, we need to be able to compare it to existing

tuners to determine whether or not it is better. The motivation for such a rigorous

evaluation framework is twofold. One, proper evaluation would allow end users of

BTB to determine which tuner is best to use. Two, knowing whether or not their

tuner actually improved performance will motivate contributors, as well as provide

good feedback.

Why is this difficult: It’s easy to compare a pair of tuners for a specified dataset

and machine learning pipeline – in fact, this is the sort of comparison contributors can

do locally while evaluating their methods. However, choosing one particular dataset is

not enough. At the same time, it is not enough to choose several datasets but only one

machine learning pipeline. Difficulties in tuning usually come from the relationship

between the dataset and the search space defined by the pipeline. For example,

deep neural nets are known to be quite difficult to tune, as they require near-perfect

hyperparameter values in order generate decent results. The classification accuracy of

the resulting model can vary quite widely depending on the hyperparameters with

which it was tuned. While this problem makes these model types ideal candidates for

tuners, some of the hyperparameters for these models are also very sensitive. Learning

rate, for example, often must be determined by choosing the right order of magnitude

(ie 0.0001 or 0.1). The model is very sensitive to the value of the learning rate, though,

and choosing a less than ideal learning rate often means the accuracy of the resulting

model is capped quite low, even if all other hyperparameters are chosen perfectly.

76

6.1.1 Setting benchmarks

To enable a comprehensive evaluation, we create benchmarks that combine a set of

datasets and a set of machine learning pipelines.

Dataset Choice: We have selected a set of 20 datasets shown in Table 6.1. We

downloaded these from the openml platform and preprocessed them. They are all

classification datasets. The train-test splits we use are available publicly on Amazon

S33. We have hundreds of datasets at the S3 location, and we can add more in the

future. .

Table 6.1: List of datasets used in tuner evaluation
Dataset Name Dataset Name

analcatdata_asbestos_1 analcatdata_bankruptcy_1
chscase_health_1 diabetes_numeric_1
diggle_table_a1_1 humandevel_1

rabe_166_1 visualizing_ethanol_1
visualizing_slope_1 witmer_census_1980_1

Pipelines: We chose two standard models from the scikit-learn library: MultiLayer

Perceptron (MLP) and K-Nearest Neighbors (KNN). These models are relatively quick

to train and evaluate compared to deep neural models. Each has some hyperparameters

that are fixed and some that can be tuned. In order to make sure that the tuner cannot

exhaustively try all combinations or randomly choose a near-perfect combination,

there are at least 1000 possible hyperparameter combinations for each problem. As the

number of choices grows exponentially with number of hyperparameters, we choose

to have two free hyperparameters. Two hyperparameters would make predicting the

score for a model more difficult to model than for one hyperparameter, but would

allow a grid search over all combinations to finish in a reasonable amount of time.

Table 6.2 lists the two models and the hyperparameters that we searched over during

the evaluation, with their ranges.

Exhaustive Grid Search: First, we ran an exhaustive grid search using a uniform

3https://s3.us-east-2.amazonaws.com/atm-data-store/

77

https://s3.us-east-2.amazonaws.com/atm-data-store/

Table 6.2: The model type and tunable hyperparameters for the search problems used
in tuner evaluation

Multilayer Perceptron

Hyperparameter Value
hidden_size_layer1 [2,300]

alpha [0.0001, 0.009]

KNN

Hyperparameter Value
n_neighbors [1,20]

leaf_size [1,50]

tuner with gridding to try all possible hyperparameter combinations in the search

space. We scored each combination using the mean result of a 5-fold cross validation

and used the f1-score as the evaluation metric. Scoring all possible hyperparameter

combinations is useful for two reasons. First, it prevents the need to train and evaluate

ML models during the tuner evaluation. Not having to train a full ML pipeline

on each iteration of search during the evaluation will save a large amount of time,

and will reduce the need for large computation servers during the evaluation step.

While the tuner’s meta-model may still take a non-trivial amount of time to fit and

predict, overall evaluation time is substantially reduced. This also keeps the model

performance for a certain candidate set of hyperparameters constant, so that tuners

that propose exactly the same hyperparameters will score exactly the same.

Second, it allows us to rank the hyperparameter combinations proposed. Being able

to compare a hyperparameter combination’s performance to all possible combinations

allows us to use a series of more interesting evaluation metrics, as opposed to just

score. We can rank the hyperparameter combinations, which allows us to tell how

the tuners’ candidates performed against the absolute best possible hyperparameters.

We choose to run the evaluation with 50 grid points on each axis, so that there are

1000 possible hyperparameter combinations for the KNN model and 2500 possible

hyperparameter combinations for the MLP model.

78

6.1.2 Evaluation Metrics

Before we describe the various evaluation metrics, we describe the names we use to

denote different aspects of the evaluation framework.

Search

problem

A search problem is a combination of a dataset 𝑖 and a pipeline 𝑝

with a given set of hyperparameters 𝛼1...𝛼𝑘. We use 𝑠 to denote a

search problem.

Iteration An iteration consists of one execution of a tuner over the search

problem. In each iteration, a set of hyperparameters is proposed by

the tuner and the pipeline is fitted and evaluated for a given metric

using cross validation.

Trial A trial is an end-to-end run of a tuner for a fixed number of

iterations for a given search problem.

Experiment An experiment is a set of repeated independent trials conducted for a

search problem.

Basic measures: We calculate two basic measures per search problem, at different

iteration numbers.

Best so far score, mbest: We define this score at the 𝑗𝑡ℎ tuner iteration for a search

problem 𝑠 as:

mbest𝑠𝑗 =
∑︁
𝑡

𝑚𝑎𝑥0<𝑧≤𝑗𝑓(𝑑𝑖,𝛼1𝑧 ...𝛼𝑘𝑧)

𝑡
(6.1)

where 𝑓()̇ is the cross-validated value of the metric we are trying to optimize.

Thus mbest𝑠𝑗 is the best possible score we achieved for this search problem at the 𝑗𝑡ℎ

iteration of the tuner, averaged across many trials. This is a fundamental unit of

scoring of a tuner over which we can derive several statistics across several search

problems (datasets+pipeline combinations). We call this mbest and use the notation

mbest(𝑎, 𝑠, 𝑗) where 𝑗 is index into the iteration number, 𝑎 is the tuner and 𝑠 is the

search problem.

79

Rank, rank: We also evaluate the standing of the best-so-far achieved by the tuner

relative to scores achieved for the search problem using grid search. The ranking of

the mbest at 𝑗𝑡ℎ iteration for a search space is given by:

ranksj =
∑︁
𝑡

|𝑖| −
∑︀

𝑖 𝑈(mbest𝑠𝑗,𝑡 − grid𝑖)

𝑡
(6.2)

where grid𝑖 is the score of the 𝑖𝑡ℎ solution discovered by the grid search, 𝑈 is the

unit step function which is equal to 1 if mbest𝑠𝑗,𝑡 ≥ grid𝑖 and |𝑖| is the total number

of solutions generated during grid search. The metric above is averaged across several

trials of the tuner for the search problem. This evaluation metric lets us determine

exactly how close the tuner was to the best possible solution from the grid. This

metric makes the differences between tuners on “easy” problems more pronounced, as

all of the tuners might have had roughly 0.9 accuracy, but their ranks will differ by at

least 1. Additionally, this metric standardizes scores across different search problems,

as it compares the score to the maximum possible for the problem given the grid

search, not the score’s maximum possible value.

Statistics across multiple search problems: Given that we can calculate a best-

so-far estimate and rank at any iteration for any search problem, we next derive

statistics to compare pairs of tuners. Each of these statistics can be calculated at any

iteration number, giving us a way to compare tuners working with different budgets.

Statistical Significance: In addition to knowing whether results differ between

tuners, it is also important to know if the results are statistically significant. This

will prevent random chance from influencing our choice of the best tuner. Given that

we run each tuner for a number of search problems (in our case, 20 problems from

10 datasets, each tried on two pipelines), we can run a significance test for all of the

tuners.

Based on the findings of [16] and [9], we know that comparing a new algorithm to

a series of already-tried algorithms can be statistically difficult due to multiplicative

comparison errors. We follow the suggestions laid out in these papers to determine

statistical significance. We first compute a non-parametric Friedman test for each

80

evaluation metric over all of the tuners. This test shows us whether or not the

differences in a given metric for any of the tuners is statistically significant. If this

test fails, it is likely that the results are drawn from a similar distribution, meaning

that none of the tuners truly outperform any of the others.

If the test succeeds, we still don’t have any information about which tuner is

performing significantly better. In this case, we follow up with a Bonferroni-Dunn

post-hoc procedure that compares the results of the new tuner to each of the other

tuners. This pairwise test will let us determine whether the difference between the

two tuners’ performance is significant. This test will likely give us more interesting

results than the Friedman test, as we can then conclude (with high probability) that,

for example, a tuner with an expected improvement acquisition function (GPEi)

outperforms a tuner a with a simple maximum acquisition function (GP).

Given these two statistics, we compare two metrics:

• Comparing rank: At an iteration 𝑗, we can accumulate the ranks achieved by

tuner A and B across multiple search problems and compare them.

• Comparing best score: At an iteration 𝑗, we can accumulate the best-so-far

achieved by tuner A and B across multiple search problems and compare them.

6.1.3 Results of an experiment

Experiment Setup: Once we have grid search on each of the datasets for each of the

ML pipelines, we will evaluate the tuners on each of these problems and evaluate the

results based on their performance on each of the evaluation metrics. The experiment

for evaluating a tuner is as follows for each dataset/ML pipeline combination:

1. Create a new tuner of the type we are testing.

2. Loop:

(a) Use the tuner to propose a candidate set of hyperparameters.

(b) Use the results from grid search to retrieve the calculated mean f1-score

from 5-fold cross validation.

81

(c) Add the hyperparameter and score combination to the tuner.

3. Continue a-c until we have proposed 100 hyperparameter combinations.

4. Store all of the tuner-proposed hyperparameters and score data for each iteration

for later evaluation.

In order to ensure confidence in the results and assess statistical significance, we run

each of the outlined trials 20 times for each search problem. This will allow us to

ensure that the results are consistent over multiple trials, similar to Section 3.6.3 for

recommenders.

To test our evaluation procedure, we conducted an experiment with 10 different

datasets, each tried on two pipelines. We compared the performance of seven tuners:

a uniform tuner, three Gaussian process-based tuners, and three Gaussian copula

process-based tuners (within each set of Gaussian tuners, there is one that acquires

based on maximum prediction, one that acquires based on expected improvement,

and one that acquires based on the velocity of the expected improvement). For each

metric, we evaluate the performance that comes from a tuning budget of 25, 50, and

100 iterations. The results show that there is not a large performance increase between

any of the tuners.

When the tuners are limited to few iterations, the results are not significant,

meaning that none of them perform better than random (as benchmarked by the

uniform tuner). Over more iterations, the GP tuner seems to do better than many of

the other tuners, but in general, there does not appear to be a tuner that significantly

and consistently outperforms the rest.

One interesting result to note is the number of times that the uniform tuner won.

While we would expect this number to be extremely small or zero for larger-budget

evaluations, a non-zero number of wins suggests that some of these problems were

sufficiently difficult that modeling the hyperparameter space does not help and can

actually hinder performance. An example distribution that could be extremely hard

to model is shown in Figure 6-1. This invites further work regarding creating tuning

methods and algorithms to allow the tuner to model this difficult distribution.

82

0.75 0.8 0.85 0.9 0.95 1
Model Score

Figure 6-1: Histogram of a search problem with a difficult distribution. While it is
easy to perform well on this search space, it is hard to model the distribution to
consistently outperform a uniform tuner. This search problem is searching the KNN
hyperparameters described in Table 6.2 on housing_1 dataset.

Figures 6-3 and 6-2 and show the performance of different tuners on a “difficult”

search problem (where a small number of hyperparameter combinations yield high

f1-scores) for the f1-score of the best proposed hyperparameter combination by a

certain iteration, and rank the best hyperparameter combination proposed (0 being

the highest scoring combination, and N being the lowest scoring where there are N

possible combinations). As we can see, the Gaussian process-based tuner performs

the best for this problem.

6.2 Automation

We would like to automate the process of reviewing and merging contributions as

much as possible. The code for a new tuner can require complicated statistics and

algorithms, making it challenging and time consuming for a maintainer to methodically

check the code quality of each contribution. If we rely too heavily on maintainers

83

0 20 40 60 80 100
150

200

250

300

Iteration

R
an

k

uniform
gp
gpei
gpei_velocity
gcp
gcpei
gcpei_velocity

Figure 6-2: Comparison of the best ranking hyperparameter combination given a MLP
pipeline on chscase_health_1 dataset. The grid for this search problem had 1000
different hyperparameter sets.

0 20 40 60 80 100
0.40

0.45

0.50

0.55

Iteration

R
an

k

uniform
gp
gpei
gpei_velocity
gcp
gcpei
gcpei_velocity

Figure 6-3: Comparison of the best mean f1 score yielded by a pipeline tuned for a
given the KNN pipeline and the chscase_health_1 dataset.

84

to review new contributions manually, it may take a very long time for them to be

integrated into the library. However, it is important to maintain a high standard for

code quality in the library, as this prevents bugs and allows for the consideration of

edge cases that weren’t previously considered.

We will use Codacy, an automated code analysis tool,4 to help automate this process.

We can configure Codacy with our chosen PEP8 style guide, and set standards for the

contributions. Codacy will then automatically comment on contributors’ pull requests,

noting any style guide violations, unnecessary complexity, or other components that

indicate low-quality code. The contributor can then fix the violations and update the

pull request. Because these comments point out the exact line and violation, adhering

to the style guide becomes very low effort for the contributor. It also makes things

easier for the maintainer, as they can see the public comments that Codacy generated,

and ensure that the final contribution adheres to the style guide. Additionally, Codacy

will provide maintainers with tools to monitor the code quality of the entire library,

allowing them to easily see which sections need work, or if a specific contributor

continues to submit low quality tuners.

6.3 Workflow for creating and merging a new method

1. A contributor forks a BTB repository and develops a new tuner. While develop-

ing it, he has a subset of datasets and a evaluation script he can use to evaluate

his tuner against others.

2. The contributor creates a pull request to the Master branch of BTB repository

with their tuner code and includes a high-level description of the tuner in the

pull request.

3. Travis CI and Codacy comment on the pull request with any detected issues.

4. The contributor revises the code and updates the pull request until all issues

are solved.
4https://www.codacy.com/

85

https://www.codacy.com/

5. The maintainer briefly reads through code to detect any tuner violations and

comments with any issues if found.

6. The contributor addresses the comments and updates the pull request.

7. Once accepted, the maintainer downloads the pull request.

8. The maintainer runs a tuner evaluation in BTB-evaluate on the new tuner.

9. The maintainer merges the pull request into BTB and updates the relevant docs

with the new tuner’s evaluated performance.

This workflow ensures that the code standards are met while requiring minimal

effort from the maintainer. The first part of the code review involves only Codacy,

Travis CI and the author of the pull request. By the time it gets to the maintainer,

basic functionality and code style and quality have been ensured. The maintainer

only has to look at the code at a high level, determining that the user workflow with

the new tuner will match that of all the other tuners. For example, if a contributor

created a tuner that required the user to call a pre-process step on their data before

add, the maintainer would not merge it, in order to ensure that the API is consistent

over all tuners. As long as there are no API violations, the contributor can evaluate

the tuner using BTB-Evaluate and merge the pull request along with the evaluated

performance.

86

Chapter 7

Conclusion

7.1 Key Findings and Results

Through this thesis, we found that with the proper abstractions, we could devise a

library that was both intuitive for data scientists to use and easy for AutoML experts

to contribute to. We demonstrated this ease of use by integrating this library into

multiple systems. We devised a recommendation algorithm that, when implemented

in a recommender system and trained for a sufficient number of iterations, leads to on

average a 5.1% performance increase over a uniform proposal method. We created an

evaluation methodology to evaluate the quality of tuners. We found that the many

tuners achieved a similar performance, and that further work could be done to create

tuners that are better able to meta-model the hyperparameter space.

7.2 Contributions

In this thesis, we

1. Revised and finalized the apis for BTB objects.

2. Extended the existing BTB library to add support for recommendation problems.

3. Evaluated our recommender against a baseline uniform recommender.

87

4. Cleaned up the code repository and extended functionally to prepare the library

for open-sourcing.

5. Designed a system for the automatic testing and evaluation of contributed code

quality.

6. Designed a system for the automatic evaluation of BTB tuners in order to

compare tuner performance.

88

Appendix A

Tables

89

Table
A

.1:
U

ser
A

P
I

for
selectors

M
ethods

P
aram

eters
R

eturns
D

escription

__init__
choices:

a
list

ofdiscrete
choices

from
w

hich
the

selector
m

ust
choose

-
Initializes

the
selector

object
w

ith
the

choices
the

selector
m

ust
select

betw
een.

select
choice_scores:

m
ap

of
{choice

->
[scores]}

for
each

possible
choice.

choice
U

ses
m

ulti-arm
ed

bandit
to

select
the

next
choice

to
m

axim
ize

the
totalrew

ard.

Table
A

.2:
D

eveloper
A

P
I

for
selectors

M
ethods

Inputs
R

eturns
D

escription

__init__
choices:

a
list

ofdiscrete
choices

from
w

hich
the

selector
m

ust
choose

-
Initializes

the
selector

object
w

ith
the

choices
the

selector
m

ust
select

betw
een.

select
choice_scores:

m
ap

of
{choice

->
[scores]}

for
each

possible
choice.

choice
U

ses
m

ulti-arm
ed

bandit
to

select
the

next
choice

to
m

axim
ize

the
totalrew

ard.

compute_rewards
scores

list
of

rewards
C

onvert
a

list
ofscores

associated
w

ith
one

choice
into

a
list

ofrew
ards.

bandit
choice_rewards:

m
apping

ofchoices
to

rew
ards

that
indicate

their
historical

perform
ance.

choice
U

ses
m

ulti-arm
ed

bandit
to

return
the

choice
that

w
e

should
m

ake
next

in
order

to
m

axim
ize

expected
rew

ard
in

the
long

term
.

90

Ta
bl

e
A

.3
:

U
se

r
A

P
I

fo
r

tu
ne

rs
M

et
ho

ds
P
ar

am
et

er
s

R
et

ur
ns

D
es

cr
ip

ti
on

__
in

it
__

tu
na

bl
es

:
or

de
re

d
lis

t
of

hy
pe

rp
ar

am
et

er
na

m
es

an
d

m
et

ad
at

a
ob

je
ct

s.
gr

id
di

ng
:

nu
m

be
r

of
po

in
ts

on
ea

ch
ax

is
on

th
e

gr
id

.

N
/A

In
st

an
ti

at
es

th
e

tu
ne

r
ob

je
ct

.

ad
d

x:
di

ct
io

na
ry

of
hy

pe
rp

ar
am

et
er

co
m

bi
na

ti
on

s.
y:

lis
t

of
sc

or
es

of
th

e
hy

pe
rp

ar
am

et
er

co
m

bi
na

ti
on

s.

N
on

e
A

dd
s

al
lh

yp
er

pa
ra

m
et

er
/s

co
re

da
ta

to
th

e
m

od
el

an
d

th
en

re
fit

s
th

e
m

od
el

on
al

lo
ft

he
da

ta
.

pr
op

os
e

n:
nu

m
be

r
of

co
m

bi
na

ti
on

s
to

pr
op

os
e.

Li
st

of
di

ct
io

na
ri

es
of

pr
op

os
ed

.
U

se
s

tu
ne

r
to

pr
op

os
e

a
se

t
of

hy
pe

rp
ar

am
et

er
s

to
tr

y
in

or
de

r
to

m
ax

im
iz

e
th

e
sc

or
e.

A
tt

ri
bu

te
s

-
V

al
ue

-
_b

es
t_

hy
pe

rp
ar

am
s

-
D

ic
ti

on
ar

y
of

tu
na

bl
es

an
d

th
ei

r
va

lu
es

.
-

_b
es

t_
sc

or
e

-
Sc

or
e

-

91

Table
A

.4:
D

eveloper
A

P
I

for
tuners

M
ethods

P
aram

eters
R

eturns
D

escription

__init__
tunables:

ordered
list

of
hyperparam

eter
nam

es
and

m
etadata

objects.
gridding:

num
ber

ofpoints
on

each
axis

on
the

grid.

N
/A

fit
x,

y
m

atrix
ofhyperparam

eters
and

their
scores.

N
one

F
its

the
m

odelto
the

num
py

representations
of

hyperparam
eters.

predict
x:

m
atrix

ofhyperparam
eters

y:
scores

U
ses

the
m

odelto
predict

scores
for

new
hyperparam

eter
candidate

com
binations

_acquire
predictions:

array
ofpredicted

scores.
Index

ofacquired
prediction.

G
iven

a
list

ofpredictions,
acquires

list
to

one
prediction.

_create_candidates
n:

num
ber

ofcandidates
to

create.
n

candidate
hyperparam

eter
com

binations,
C

reates
a

list
ofcandidates

hyperparam
eters

to
chose

from
.

92

Ta
bl

e
A

.5
:

U
se

r
A

P
I

fo
r

re
co

m
m

en
de

rs
M

et
ho

ds
P
ar

am
et

er
s

R
et

ur
ns

D
es

cr
ip

ti
on

__
in

it
__

dp
p_

ma
tr

ix
:

m
at

ri
x

of
da

ta
se

t
pi

pe
lin

e
pe

rf
or

m
an

ce
m

at
ri

x.
-

C
on

st
ru

ct
s

th
e

re
co

m
m

en
de

r
ob

je
ct

.

ad
d

da
ta

:
di

ct
io

na
ry

m
ap

pi
ng

pi
pe

lin
e

in
di

ce
s

to
th

e
ac

cu
ra

cy
va

lu
e

w
he

n
tr

ie
d

on
th

e
da

ta
se

t.

N
on

e
A

dd
s

al
ld

at
a

po
in

ts
fr

om
da

ta
to

th
e

m
od

el
an

d
th

en
re

fit
s

th
e

m
od

el
on

al
lo

f
th

e
da

ta
.

pr
op

os
e

N
on

e
In

de
x

of
pi

pe
lin

e
U

se
s

re
co

m
m

en
de

r
sy

st
em

to
pr

op
os

e
th

e
ne

xt
pi

pe
lin

e
(i

nd
ex

)
to

tr
y

in
or

de
r

to
m

ax
im

iz
e

th
e

sc
or

e.

A
tt

ri
bu

te
s

-
V
al

ue
D

es
cr

ip
ti

on
_b

es
t_

pi
pe

li
ne

-
In

de
x

of
pi

pe
lin

e
C

la
ss

ar
gu

m
en

t
of

in
de

x
of

be
st

sc
or

in
g-

pi
pe

lin
e

tr
ie

d
on

da
ta

se
t.

_b
es

t_
sc

or
e

-
Sc

or
e

C
la

ss
ar

gu
m

en
t

of
be

st
sc

or
e

of
pi

pe
lin

es
tr

ie
d

on
da

ta
se

t.

Ta
bl

e
A

.6
:

D
ev

el
op

er
A

P
I

fo
r

re
co

m
m

en
de

rs

M
et

ho
ds

P
ar

am
et

er
s

R
et

ur
ns

D
es

cr
ip

ti
on

fi
t

X
N

on
e

Fi
ts

th
e

re
co

m
m

en
de

r
m

od
el

gi
ve

n
th

e
da

ta
ve

ct
or

X
w

he
re

in
de

x
ii

n
X

is
th

e
sc

or
e

of
pi

pe
lin

e
io

n
th

e
ne

w
da

ta
se

t,
or

0
if

no
t

tr
ie

d.
pr

ed
ic

t
in

di
ce

s:
a

lis
t

of
pi

pe
lin

e
in

di
ce

s
A

ra
nk

in
g

of
in

di
ce

s
R

an
ks

in
di

ce
s

ba
se

d
on

pr
ed

ic
te

d
pe

rf
or

m
an

ce
of

pi
pe

lin
e

in
de

x
on

th
e

ne
w

da
ta

se
t.

ac
qu

ir
e

sc
or

es
:

a
lis

t
of

pi
pe

lin
e

sc
or

es
In

de
x

B
as

ed
on

pr
ed

ic
te

d
sc

or
es

,r
et

ur
ns

th
e

in
de

x
in

to
sc

or
es

th
at

m
ax

im
iz

es
th

e
ac

qu
is

it
io

n
fu

nc
ti

on
.

ge
t_

ca
nd

id
at
es

X
In

di
ce

s
R

et
ur

ns
th

e
ca

nd
id

at
e

pi
pe

lin
e

in
di

ce
s

to
tr

y
on

X
.

93

Table
A

.7:
A

P
I

ofH
yperparam

eter
B

T
B

C
lass

M
ethod

P
aram

eters
R

eturns
D

escription

fit_transform
x,y

x
F
its

(ifnecessary)
the

hyperparam
eter

transform
ation

m
odelto

x
and

then
returns

transform
ed

x.
inverse_transform

x
x

Inverse
transform

s
x.

get_grid_axis
grid_size

list
R

eturns
grid

points
for

hyperparam
eter

based
on

range
and

grid
size.

94

Ta
bl

e
A

.8
:

R
es

ul
ts

fr
om

tu
ne

r
ev

al
ua

ti
on

on
20

20
se

ar
ch

sp
ac

es
;E

ac
h

ex
pe

ri
m

en
t

w
as

ru
n

20
ti

m
es

M
et

ri
c

M
ax

Sc
or

e
St

d
M

ax
Sc

or
e

M
in

R
an

k
St

d
R

an
k

#
W

in
s

it
er

at
io

n
10

25
50

10
0

10
25

50
10

0
10

25
50

10
0

10
25

50
10

0
10

25
50

10
0

U
ni

fo
rm

0.
79

0.
83

0.
85

0.
87

0.
12

0
.1
2

0
.1
1

0
.1
1

6
9
.5
3

3
1
.1
9

1
7
.7
0

9
.5
4

6
0
.3
2

2
6
.3
7

1
5
.3
2

8
.5
2

2
2

2
3

G
P

0.
80

0.
84

0.
86

0.
88

0.
12

0
.1
1

0
.1
1

0
.1
0

6
6
.7
0

2
8
.4
1

1
5
.7
1

7
.7
9

6
5
.6
8

2
6
.6
1

1
5
.7
4

7
.8
2

4
6

1
0

9

G
P

E
i

0.
79

0.
82

0.
85

0.
87

0.
13

0
.1
2

0
.1
1

0
.1
1

7
6
.6
9

3
2
.5
3

1
8
.6
8

9
.5
8

6
8
.6
9

2
3
.2
5

1
2
.9
8

7
.3
4

3
1

3
4

G
P

E
iV

el
oc

it
y

0.
79

0.
82

0.
85

0.
87

0.
13

0
.1
2

0
.1
1

0
.1
1

7
2
.1
9

3
5
.1
8

1
8
.1
3

1
0
.5
0

5
8
.8
8

2
7
.5
0

1
9
.5
0

9
.9
2

3
1

3
2

G
C

P
0.
80

0.
83

0.
86

0.
88

0.
12

0
.1
2

0
.1
1

0
.1
1

6
9
.9
6

3
5
.5
7

1
8
.5
7

8
.0
0

6
6
.2
5

3
4
.6
0

1
7
.5
3

8
.2
7

6
5

3
6

G
C

P
E

i
0.
79

0.
83

0.
85

0.
87

0.
13

0
.1
2

0
.1
1

0
.1
1

7
6
.0
9

3
4
.1
7

1
7
.9
1

9
.5
9

6
0
.8
6

2
4
.5
1

1
4
.9
0

8
.4
1

2
2

4
4

G
C

P
E

iV
el

oc
it
y

0.
79

0.
83

0.
85

0.
87

0.
13

0
.1
2

0
.1
1

0
.1
1

7
2
.2
2

3
3
.2
6

1
8
.7
5

9
.3
8

5
9
.8
8

2
9
.7
5

1
7
.9
4

8
.0
9

2
3

3
4

Ta
bl

e
A

.9
:

St
at

is
ti

ca
la

na
ly

si
s

of
re

su
lt

s
fr

om
tu

ne
r

ev
al

ua
ti

on
on

20
se

ar
ch

sp
ac

es
;E

ac
h

ex
pe

ri
m

en
t

w
as

ru
n

20
ti

m
es

M
et

ri
c

M
ax

Sc
or

e
M

in
R

an
k

it
er

at
io

n
10

25
50

10
0

10
25

50
10

0

Fr
ie

dm
an

p-
va

lu
e

0.
09

0.
14

0
.0
4

0
.0
1

0
.4
2

0
.0
4

0
.0
2

0
.0
0

Fr
ie

dm
an

St
at

is
ti

c
10
.9
7

9.
56

1
3
.0
8

1
3
.0
8

6
.0
3

1
3
.1
4

1
4
.8
8

1
8
.6
8

Si
gn

ifi
ca

nt
N

o
N

o
Y

es
Y

es
N

o
Y

es
Y

es
Y

es

95

96

Bibliography

[1] Alec W Anderson. “Deep Mining: Scaling Bayesian Auto-tuning of Data Science

Pipelines”. MA thesis. Massachusetts Institute of Technology, 2017.

[2] Alec Anderson et al. “Sample, estimate, tune: Scaling bayesian auto-tuning of

data science pipelines”. In: Data Science and Advanced Analytics (DSAA), 2017

IEEE International Conference on. IEEE. 2017, pp. 361–372.

[3] James S Bergstra et al. “Algorithms for hyper-parameter optimization”. In:

Advances in neural information processing systems. 2011, pp. 2546–2554.

[4] Leo Breiman. “Random Forests”. In: Machine Learning 45.1 (Oct. 2001), pp. 5–

32. issn: 1573-0565. doi: 10.1023/A:1010933404324. url: https://doi.org/10.

1023/A:1010933404324.

[5] Jason Brownlee. Sequence Classification with LSTM Recurrent Neural Networks

in Python with Keras. July 2016. url: https://machinelearningmastery.com/

sequence-classification-lstm-recurrent-neural-networks-python-keras/.

[6] Lars Buitinck et al. “API design for machine learning software: experiences

from the scikit-learn project”. In: ECML PKDD Workshop: Languages for Data

Mining and Machine Learning. 2013, pp. 108–122.

[7] François Chollet et al. Keras. 2015. url: https://keras.io.

[8] Andrzej Cichocki and Anh-Huy Phan. “Fast local algorithms for large scale

nonnegative matrix and tensor factorizations”. In: IEICE transactions on fun-

damentals of electronics, communications and computer sciences 92.3 (2009),

pp. 708–721.

97

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-python-keras/
https://keras.io

[9] Janez Demšar. “Statistical comparisons of classifiers over multiple data sets”. In:

Journal of Machine learning research 7.Jan (2006), pp. 1–30.

[10] Li Deng. “The MNIST database of handwritten digit images for machine learning

research [best of the web]”. In: IEEE Signal Processing Magazine 29.6 (2012),

pp. 141–142.

[11] Will D Drevo, Kalyan K Veeramachaneni, and Una-May O’Reilly. Distributed,

multi-model, self-learning platform for machine learning. US Patent App. 14/598,628.

May 2016.

[12] Manuel Fernández-Delgado et al. “Do we need hundreds of classifiers to solve real

world classification problems”. In: J. Mach. Learn. Res 15.1 (2014), pp. 3133–

3181.

[13] Cédric Févotte and Jérôme Idier. “Algorithms for nonnegative matrix factor-

ization with the 𝛽-divergence”. In: Neural computation 23.9 (2011), pp. 2421–

2456.

[14] Nicolo Fusi and Huseyn Melih Elibol. “Probabilistic matrix factorization for

automated machine learning”. In: arXiv preprint arXiv:1705.05355 (2017).

[15] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. “Learning to forget:

Continual prediction with LSTM”. In: (1999).

[16] Magdalena Graczyk et al. “Nonparametric statistical analysis of machine learning

algorithms for regression problems”. In: International Conference on Knowledge-

Based and Intelligent Information and Engineering Systems. Springer. 2010,

pp. 111–120.

[17] F Hutter et al. “Automatic Machine Learning (AutoML)”. In: ICML 2015 Work-

shop on Resource-Efficient Machine Learning, 32nd International Conference

on Machine Learning. 2015.

[18] M. G. Kendall. “A New Measure Of Rank Correlation”. In: Biometrika 30.1-2

(1938), pp. 81–93. url: http://dx.doi.org/10.1093/biomet/30.1-2.81.

98

http://dx.doi.org/10.1093/biomet/30.1-2.81

[19] MIT Laboratory. Auto-tuning data science: New research streamlines machine

learning. Dec. 2017. url: http://news.mit.edu/2017/auto-tuning-data-science-

new-research-streamlines-machine-learning-1219.

[20] Wes McKinney et al. “Data structures for statistical computing in python”. In:

Proceedings of the 9th Python in Science Conference. Vol. 445. Austin, TX. 2010,

pp. 51–56.

[21] Janakiram MSV. Why AutoML Is Set To Become The Future Of Artificial

Intelligence. Apr. 2018. url: https://www.forbes.com/sites/janakirammsv/

2018/04/15/why-automl-is-set-to-become-the-future-of-artificial-intelligence/.

[22] Cassio P de Campos et al. “Discovering Subgroups of Patients from DNA Copy

Number Data Using NMF on Compacted Matrices”. In: 8 (Nov. 2013), e79720.

[23] Victor Picheny, Tobias Wagner, and David Ginsbourger. “A benchmark of kriging-

based infill criteria for noisy optimization”. In: Structural and Multidisciplinary

Optimization 48.3 (2013), pp. 607–626.

[24] Dmitry Plotnikov et al. “Automatic tuning of compiler optimizations and analysis

of their impact”. In: Procedia Computer Science 18 (2013), pp. 1312–1321.

[25] Paul Resnick and Hal R Varian. “Recommender systems”. In: Communications

of the ACM 40.3 (1997), pp. 56–58.

[26] Guido van Rossum, Barry Warsaw, and Nick Coghlan. PEP 8 – Style Guide for

Python Code. 2013. url: https://www.python.org/dev/peps/pep-0008/.

[27] Wade Shen. Data-Driven Discovery of Models. 2017. url: https://www.darpa.

mil/program/data-driven-discovery-of-models.

[28] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical bayesian opti-

mization of machine learning algorithms”. In: Advances in neural information

processing systems. 2012, pp. 2951–2959.

[29] Thomas Swearingen et al. “ATM: A distributed, collaborative, scalable system

for automated machine learning”. In: IEEE International Conference on Big

Data. 2017.

99

http://news.mit.edu/2017/auto-tuning-data-science-new-research-streamlines-machine-learning-1219
http://news.mit.edu/2017/auto-tuning-data-science-new-research-streamlines-machine-learning-1219
https://www.forbes.com/sites/janakirammsv/2018/04/15/why-automl-is-set-to-become-the-future-of-artificial-intelligence/
https://www.forbes.com/sites/janakirammsv/2018/04/15/why-automl-is-set-to-become-the-future-of-artificial-intelligence/
https://www.python.org/dev/peps/pep-0008/
https://www.darpa.mil/program/data-driven-discovery-of-models
https://www.darpa.mil/program/data-driven-discovery-of-models

[30] Stewart W Wilson et al. “Explore/exploit strategies in autonomy”. In: Proc. of

the Fourth International Conference on Simulation of Adaptive Behavior: From

Animals to Animats. Vol. 4. 1996, pp. 325–332.

100

	Introduction
	Overview of Problems
	Tuning
	Selection
	Recommendation
	BTB
	Thesis organization

	Tuners and Selectors
	Tuner
	API Changes
	User API
	Contributor API

	Selector
	User API
	Contributor API

	Recommender
	Overview of recommender problem
	Related Work
	Notation

	Methods
	Design
	User API
	Contributor API
	Evaluation
	Data
	Storing the results
	Evaluation of Results

	Results
	Performance Graphs
	Improvement Upon the Results

	Current usage of BTB
	DeepMining
	MIT TA2 System
	ATM

	Open Source Preparation
	Increased Functionality
	Handling Categorical hyperparameters
	Abstraction of Logic for Hyperparameter Transformation

	Testing
	Examples

	Getting contributions from experts
	Evaluating methodological contributions
	Setting benchmarks
	Evaluation Metrics
	Results of an experiment

	Automation
	Workflow for creating and merging a new method

	Conclusion
	Key Findings and Results
	Contributions

	Tables

