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Abstract

In this thesis, we present DeepMining, a framework to search for machine learning
pipelines. The high-level goal of DeepMining is to solve the pipeline search problem:
given a problem and a dataset, find the pipeline best-suited to solve that problem.
The DeepMining platform serves as a testbed for developers to experiment with
different methods of computing and evaluating machine learning pipelines. Specifically,
developers have autonomy over how to evaluate different configurations in parallel,
score a pipeline given a dataset and hyperparameter configuration, and efficiently search
over the pipeline space. DeepMining was designed with modularity and extensibility in
mind: developers can easily implement new search algorithms, scoring functions, and
computation frameworks. At the same time, users can switch between these modules
with minimal effort.
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Chapter 1

Introduction

When confronted with a problem and dataset, data scientists aim to find the best

pipeline to solve that problem. After finding the best pipeline, the data scientist also

gets to make decisions regarding the hyperparameters of this pipeline, which could

significantly impact its accuracy when it is fit to the data.

However, it isn’t easy to find the best pipeline for a given dataset and problem,

nor is it easy to manually guess the optimal hyperparameters for a given pipeline: in

an ideal world, every part of this process can be automated.

Therefore, we would like to create a library to tackle what we will refer to as the

pipeline search problem. However, because developments in this field occur rapidly,

settling for any one specific algorithm or methodology would be hasty. To address

this, we aim to create a platform that is easy to use, but lets contributors easily

implement new ideas and frameworks. Therefore, the library serves as a testbed for

data scientists, and should evolve along with the state-of-the-art.

With this in mind, we enhance DeepMining, a library to solve the pipeline search

problem: specifically, DeepMining accepts a dataset (images, text, audio, tabular,

relational, timeseries), a problem (classification, regression, collaborative filtering,

clustering), and a list of candidate pipelines, and finds the optimal pipeline to solve

that problem [3]. In this chapter, we specify the pipeline search problem, discuss the

initial state of DeepMining, and summarize our contributions to the project.
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1.1 Notation

To objectively specify the pipeline search problem, we introduce the following notation.

1.1.1 Pipeline Notation

Define a pipeline as a sequence of steps whose hyperparameter have not been fixed

yet. For example, a pipeline could be a random forest classifier, or a four-layer neural

network.

Each pipeline 𝑝 has a set of hyperparameters 𝐻(𝑝) = {ℎ1, ℎ2, . . . ℎ|𝐻(𝑝)|}. Let the

range of some hyperparameter ℎ𝑖 ∈ 𝐻(𝑝) be 𝑟(ℎ𝑖).

Let 𝑅(𝑝) = 𝑟(ℎ1) × 𝑟(ℎ2) × ... × 𝑟(ℎ|𝐻(𝑝)|) denote the hyperparameter space

of that pipeline. In other words, this represents every possible configuration of

hyperparameters for that pipeline.

When a pipeline has fixed hyperparameters, we refer to it as a fully specified

pipeline. For a fully specified pipeline 𝑡 and hyperparameter configuration 𝑟 ∈ 𝑅(𝑡),

let 𝑃 (𝑡, 𝑟) be the pipeline represented by template 𝑡 and hyperparameters 𝑟.

For some pipeline 𝑝 and input 𝑋, let 𝑝(𝑋) be the predictions when 𝑋 is inputted

to 𝑝: these might be class labels, float values, etc.

1.1.2 Problem Notation

Assume we are given a dataset 𝑋1, 𝑋2, . . . 𝑋𝑛 of 𝑚-dimensional vectors, along with

a vector 𝑦1, 𝑦2, . . . 𝑦𝑛 of labels. If not already specified, we can divide this data into

training and validation sets.

In addition, we define the problem type 𝑏 as the type of predictions we need to

perform: this might include binary classification, multiclass classification, regression,

etc.

Finally, we define a scoring function 𝑔(𝑝) that assigns a score to a pipeline: for

example 𝑔(𝑝) might compute predictions 𝑝(𝑋test) on a test set, and compare them

to the true labels 𝑦test. Depending on the problem, we might want to maximize or
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minimize this score, although this is not an important distinction: without loss of

generality, we will assume we wish to maximize 𝑔.

When we refer to the pipeline search problem, we generally mean the following:

given (𝑋, 𝑦, 𝑏, 𝑔), find the pipeline that optimizes 𝑔 with respect to the dataset (𝑋, 𝑦)

and problem type 𝑏.

Specifically, given a given problem and dataset, let 𝑃 (𝑋, 𝑦, 𝑏) be the space of all

pipelines that might potentially solve the problem: in other words, they accept data

in the same format as 𝑋 and 𝑦, and the pipeline is well-suited to solve problem 𝑏.

Finding 𝑃 (𝑋, 𝑦, 𝑏) is difficult, because it requires a knowledge of large space of possible

pipelines and detailed metadata about each pipeline. This problem has not been fully

solved in DeepMining.

Once we have the space of potential pipelines (a smaller subset), we can perform

hyperparameter optimization on each pipeline. Therefore, considering every possible

pipeline and hyperparameter configuration, we wish to compute the following:

argmax𝑝∈𝑃 (𝑋,𝑦,𝑏),𝑟∈𝑅(𝑝) 𝑔(𝑃 (𝑝, 𝑟))

Of course, we cannot always search through the entire hyperparameter space, nor

do we have access to every possible pipeline that can solve the problem at hand.

Therefore, we must approximate in both dimensions.

1.2 Related Work

The high-level goal of DeepMining is akin to that of AutoML efforts today, which

aim to automate every aspect of the machine learning process: these include feature

engineering, architecture search, and hyperparameter search. We summarize efforts

in each of these fields in the following sections, and discuss how DeepMining’s goals

align with them.

Feature engineering: At a high level, feature engineering is the process of parsing

the input data, and generating salient features to perform predictions on. Feature
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engineering can be done in conjunction with model selection: if the features are well-

engineered, a model might perform better, or it might be easier to find a sufficiently

accurate model.

Usually, feature engineering is a very time-consuming process, where data scientists

manually generate and evaluate different feature representations. Modern-day research

focuses on automating the feature engineering process: for example, the Data to AI

group has created Deep Feature Synthesis, which automatically infers relationships in

the data, and programmatically performs transformations to extract valuable features

[4].

Architecture search: Another difficult aspect of machine learning is model selection:

oftentimes, this involves tampering with meta-hyperparameters involving the layers in

the model, which is a difficult process to conduct manually.

Current research focuses on two levels of this problem: automatically generating

model architectures, and allocating resources given a fixed set of candidate architectures.

For example, Zoph. et al. take a reinforcement learning approach to generating

candidate neural network architectures, by training over the space of model descriptions

[11]. Contrarily, the TuPAQ system accepts the search space of architectures as input,

and performs a bandit-based hyperparameter tuning procedure, where resources are

allocated to the most promising candidates [7].

In DeepMining, we focus on the latter: using a multi-armed bandit to intelligently

decide which architectures to focus resources on. We discuss this further in Chapter 5.

Hyperparameter tuning: Hyperparameter tuning is one of the most important

parts of the machine learning process: without an efficient means of searching the

hyperparmaeter space, data scientists might resort to default parameters, or produce

suboptimal architectures. The machine learning community has done extensive work

on making this process more efficient by training a model over the hyperparameter

space. This both automates the process, and increases efficiency by reducing the

search space.

There are a variety of approaches to the hyperparameter tuning problem: these

include Bayesian optimization and bandit-based approaches [8, 6].
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Hyperparameter search has been a key goal of DeepMining, and continues to be a

major focus in the next iteration. We discuss this further in Chapter 5.

1.3 Initial State of DeepMining

Over the last few years, students in the Data to AI group created an initial imple-

mentation of DeepMining, discussed in [3]. In short, the original implementation

allowed data scientists to define an arbitrary pipeline using the Pipeline object from

scikit-learn (allowing for custom-implemented functions, not necessarily imported

from scikit-learn). Then, developers can expose the type, name, and range of each

of its hyperparameters, and pass this information to a DeepMining function along

with a dataset and a scoring function. Then, the system performs the following:

• Trains a novel implementation of Bayesian hyperparameter optimization with a

Gaussian Copula Process.

• If the user chooses to, evaluates each hyperparameter configuration using the Bag

of Little Bootstraps (BLB) method, proposed in [5], which evaluates bootstraps

created from subsamples of the dataset. The user has the option to parallelize

these computations, either using Spark or the Pathos Multiprocessing module.

The specifics of BLB will be discussed in Chapter 4.

• Feeds this information back into the hyperparameter model, which then proposes

new candidates to explore.

The authors make the interesting observation that Bag of Little Bootstraps, when

combined with a Gaussian Copula Process, provides significant speedup without

compromising accuracy. While doing so, they provide an abstraction that is convenient

for developers to perform hyperparameter optimization on any pipeline.
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1.4 Goals for the New Iteration of DeepMining

While the initial iteration of DeepMining provided a valid proof of concept, we believe

there could be improvements, both in terms of functionality and design. These are

discussed in the following sections.

Feature goals: The existing iteration of DeepMining only performs hyperparameter

optimization on one given pipeline. However, we wish to go one step further, and

perform optimization over any number of feasible pipelines. This enables us to allocate

resources efficiently on two levels: choosing pipelines to explore, and hyperparameters

to explore for each pipeline.

Design Goals: In addition, we believe the platform could be made more extensible,

to make it easier for developers to contribute new modules. With this in mind, we

have the following design goals:

• Isolation: First, we want to separate distinct functionalities into different

modules: this way, they can be tested and developed independently. As an

example, scoring and searching can be isolated from each other. In addition,

abstracting out these modules might benefit other open-source projects, including

those developed by the Data to AI Group, because they can be reused.

• Modularity: Machine learning is an ever-expanding field, and new techniques

are developed regularly: for this reason, we want to make the codebase as

modular as possible. If a decision to use a particular algorithm or framework is

arbitrary, then we strive to make it an extensible module. This way, developers

can easily implement new algorithms and frameworks, and users can easily

switch between these implementations.

On a similar vein, machine learning pipelines consist of several steps, and these

steps might be reusable between different pipelines. Therefore, we wish to

provide the capability to represent these different steps in a simple, composable

way.

• Flexibility: The API for DeepMining should be simple enough that it can
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support a variety of frameworks. For example, it should support a variety

of machine learning frameworks like Keras, TensorFlow, etc. instead of just

supporting scikit-learn.

• Simplicity: Finally, DeepMining needs to provide enough functionality that

developers can easily add new modules to the framework. Developers should only

have to focus on the core logic of the module when contributing to DeepMining.

Achieving these design goals involves several tradeoffs. For example, the more

rigid the abstraction, the easier it is for DeepMining to provide facilities specific to

the implementation. However, if the abstraction is too constrained, developers lose

the flexibility to implement novel algorithms.

1.5 Contributions

We kept these goals in mind when designing the next iteration of DeepMining. In this

redesign, we separated two functionalities into independent repositories: an abstraction

for defining machine learning pipelines and fitting them to data, and a library for

Bayesian hyperparameter tuning and multi-armed bandits. We still have a core

DeepMining library, which aims to solve the pipeline search problem. The DeepMining

library, the primary focus of this thesis, directly depends on the other two repositories.

In this thesis, we present the current state of the redesigned codebase, along with the

major enhancements to the DeepMining library.

1.6 Outline

In Chapter 2, we summarize the refactored DeepMining codebase. In Chapter 3, we

discuss different datatypes and input formats, and how they should be represented

in DeepMining. Chapter 4, Chapter 5, and Chapter 6 describe the ScorePipeline,

DeepMineSearch, and Compute modules, which comprise my major contributions to

the project. Next, Chapter 7 explores the the performance benefits of switching
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between different score, search, and compute modules. Chapter 8 offers concluding

remarks, and discusses potential future work. Finally, Appendix A contains API tables

for the ScorePipeline, DeepMineSearch, and Compute modules.
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Chapter 2

Overview of the refactored code

We had four design goals in mind when refactoring DeepMining: isolation, modu-

larity, flexibility, and simplicity. With these design goals in mind, we refactored the

DeepMining codebase into three major repositories, described below.

• MLBLocks, which lets users create machine learning pipelines.

• BTB, or Bayesian Tuning and Bandits, which offers functions to solve the

multi-armed bandit problem and perform hyperparameter optimization.

• DeepMining, which lets users specify a machine learning problem, and finds the

pipeline best-suited to solve that problem. This thesis focuses on DeepMining.

In this chapter, we discuss the design and function of each of these libraries, and

how they depend on each other.

2.1 MLBlocks

The MLBlocks library lets users specify data transformation functions (blocks), and

compose these primitives to form pipelines. This library consists of three major

parts: MLHyperparam, MLBlock, and MLHyperparam. These will be discussed in the

subsequent sections.

23



MLHyperparam: The MLHyperparam object lets users specify tunable hyperparam-

eters of the following types: integer, float, string, and categorical. The object simply

contains a name, type, and range: for example, a float might have the range [0, 1],

and a categorical parameter might have the range [2, 6, 10]. Each hyperparameter also

contains a value, which is randomly initialized.

MLBlock: The MLHyperparam object represents a machine learning primitive. Most

importantly, a MLBlock contains the following attributes:

• model: The model or function that the MLBlock executes.

• fit(X, y): A function that fits model to labelled data.

• produce(X): A function that returns predictions from model, given new unla-

beled data points.

• tunable_hyperparams: A list of MLHyperparam objects, indicating the parame-

ters in model that can be tuned.

• fixed_hyperparams: A list of hyperparameters that do not need to be tuned,

but whose values can be modified by the user. For example, input dimension

might be a fixed hyperparameter.

A user can create a MLBlock by creating a Python file containing the model, as

well as the fit and produce methods, then creating a JSON file pointing to these

functions. In addition, the JSON contains a list of tunable hyperparameters, along

with their types and ranges. See Figure 2-1 for an example JSON, depicting the

histogram of oriented gradients (HOG) model for image processing.

Depending on the library used, MLBlocks might use a different JSON parser. For

example, MLBlocks has a specific parser for scikit-learn and Keras. The parser for

scikit-learn is simple; however, because Keras primitives cannot be composed in

the same way, a Keras JSON needs to include every layer the model consists of.

We choose the JSON abstraction for two reasons. First, contributors can easily

add new MLBLock objects to the library, and users can easily compose these JSON
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1 {
2 "name": "HOG",
3 "class": "mlblocks.components.functions.image.HOG.HOG",
4 "fit": "fit",
5 "produce": "make_hog_features",
6 "hyperparameters": {
7 "num_orientations": {
8 "type": "int",
9 "range": [9, 9]

10 },
11 "num_cell_pixels": {
12 "type": "int",
13 "range": [8, 8]
14 },
15 "num_cells_block": {
16 "type": "int",
17 "range": [3, 3]
18 }
19 }
20 }

Figure 2-1: A simplified example of an MLBlock JSON.

files to create a MLPipeline object, which will be discussed in the next section. In

addition, developers have autonomy over how they implement the model, fit, and

produce methods, as long as they provide a JSON pointing to those methods. Finally,

developers can easily modify which hyperparameters to tune, along with the ranges

for these hyperparameters.

MLPipeline: The MLPipeline class lets users compose primitive MLBlock objects to

create machine learning pipelines. See Figures 2-2 and 2-3 for a simple visualization.

At the simplest level, users can simply initialize an MLPipeline with a list of JSON

file paths, each referring to a different MLBlock. See Figure 2-4 for a simple example.

In general, MLPipeline assumes that all blocks are executed sequentially, although

the abstraction can be easily modified to support more complex data flows.

Over the course of this year, we have implemented a library of MLBlock and

MLPipeline objects. These pipelines that support a variety of problems, such as

classification and regression. In addition, these pipelines cater to a variety of data

types like image, audio, text, and graph. These will be discussed further in Chapter 3.
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MLBlock

MLHyperparam
 Name: param1

 Type: Int
Range: [10, 100]

MLHyperparam
 Name: param2
 Type: Float
Range: [0, 1]

MLHyperparam
 Name: param3

 Type: Categorical
Range: [2, 4, 6]

Figure 2-2: An MLBlock object.

MLPipeline

MLBlock
Name: Step1

Hyperparams: [...]

MLBlock
Name: Step2

Hyperparams: [...]

MLBlock
Name: Step3

Hyperparams: [...]

Figure 2-3: An MLPipeline object.

1 class TraditionalImagePipeline(MLPipeline):
2 """
3 Traditional image pipeline using HOG features.
4 """
5 def __new__(cls , *args , ** kwargs):
6 return MLPipeline.from_ml_json ([
7 'HOG',
8 'random_forest_classifier '
9 ])

Figure 2-4: A simple example of an MLPipeline object.
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1 from btb.tuning import GP
2 from btb import HyperParameter , ParamTypes
3
4 # We are tuning a random forest classifier.
5 model = RandomForestClassifier ()
6
7 # Initialize the hyperparameters along with their ranges.
8 tunables = [
9 ('n_estimators ', HyperParameter(ParamTypes.INT , [10, 500])),

10 ('max_depth ', HyperParameter(ParamTypes.INT , [3, 20]))
11 ]
12
13 # Initialize a Gaussian Process (GP) tuner.
14 tuner = GP(tunables)
15
16
17 # Get a proposal for the next hyperparameters to consider.
18 parameters = tuner.propose ()
19
20 # Set these hyperparameters in the model.
21 # This method is hypothetical , for demonstration purposes.
22 model.set_hyperparameters(parameters)
23
24 # Generate a score for this hyperparameter configuration.
25 score = model.score(X_test , y_test)
26
27 # Pass this information along to the tuner , which will
28 # update its model and propose new hyperparameters.
29 tuner.add(parameters , score)

Figure 2-5: An example usage of a BTB tuner.

2.2 BTB

The Bayesian Tuning and Bandits (BTB) library, also developed by the Data to AI

group, offers tuners and selectors to aid in the model tuning process. These two

modules are described below.

Tuners: BTB tuners create models over the hyperparameter space, and propose

configurations to evaluate next. Each tuner accepts a list of hyperparameters, each

with a particular type (integer, float, string categorical, etc.) and range. The tuner

accepts a list of hyperparameter configurations and their scores, and learns a model

over the space, which it uses to propose new candidate hyperparameters. BTB offers

tuners like uniform, Gaussian Process, and Gaussian Copula Process. Refer to Figure

2-5 for a hypothetical usage of a BTB tuner.

Selectors: BTB selectors help solve the multi-armed bandit problem. Specifically, a

selector takes in a discrete list of choices, and scores associated with those choices,
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1 from sklearn.svm import SVC
2 from btb.selection import UCB1
3
4 # Assume we are selecting between a random forest classifer and a
5 # suppoer vector machine.
6 models = {
7 'RF': RandomForestClassifier ,
8 'SVC': SVC
9 }

10
11 # We use a Upper Confidence Bound bandit , provided by BTB.
12 selector = UCB1(['RF', 'SVM'])
13
14 # Assume we run the RandomForestClassifier on several different
15 # hyperparameter configurations , and return a list of scores.
16 rf_scores = [....]
17
18 # Similarly , we have several scores for the SVC model.
19 svc_scores = [....]
20
21 # This uses the scores and proposes the model to consider next ,
22 # either RF or SVC.
23 next_model = selector.select ({'RF': rf_scores , 'SVC': svc_scores ←˒

})

Figure 2-6: An example usage of a BTB selector.

and proposes the next choice to explore. To accomplish this, the selector makes the

tradeoff between exploration and exploitation, deciding whether to try new choices

or focus on the most promising choices. BTB offers several selectors, including

uniform, hierarchical, and Upper Confidence Bound (UCB). Refer to Figure 2-6 for a

hypothetical usage of a BTB selector. In the case of DeepMining, selectors can be

used to choose between different pipelines given their scores.

Relevance to DeepMining: When applying BTB to DeepMining, we might use

selectors to choose from a set of potential pipeline templates, and tuners to choose

from the hyperparameter space for each pipeline. Figure 2-7 depicts an example of

how the selectors and tuners might be used, assuming the search space consists of two

pipelines. We implement this concept as the SearchBTB module in DeepMining, as

discussed in Chapter 5.
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Selector

Pipeline 1

Tuner 1

Pipeline 2

Tuner 2
proposed

hyperparam
score for
hyperparam 

proposed
hyperparam

score for
hyperparam 

choose pipeline   1 or pipeline 2 

scores for
pipeline 1 

scores for
pipeline 2 

Figure 2-7: How BTB might be used for hyperparameter optimization over a search
space of several pipelines.

2.3 DeepMining

The DeepMining module, which is the focus of this thesis, aims to solve any machine

learning problem. The library accepts a dataset and a list of candidate pipelines,

and performs hyperparameter optimization over those pipelines to find the optimal

pipeline. To aid in this process, DeepMining has three main modules: ScorePipeline,

DeepMineSearch, and Compute. Each of these modules is easily extensible by devel-

opers: we summarize each of these modules below, and focus on specific details in

subsequent chapters.

ScorePipeline: The ScorePipeline class takes in a fitted pipeline, a dataset, and a

scoring function, and returns a score. Depending on the implementation, this score

may be computed in several ways: using cross validation, bootstrapping, subsampling,

etc.

DeepMineSearch: The DeepMineSearch class takes in a dataset, a problem type,

a scoring function, and a list of candidate pipelines, and tries to find the optimal

pipeline and hyperparameters. The search algorithm might be a simple grid search, or

it might allocate resources more intelligently.

Compute: The Compute class lets users perform simple MapReduce computations

on any computation framework: these may include Dask, Spark, Pathos MultiPro-

cessing, etc. This module helps speed up embarrassingly parallel computations in the
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ScorePipeline and DeepMineSearch classes.

2.4 Overall workflow

In this section, we summarize the overall workflow of DeepMining, thereby demon-

strating how all these modules interact. See Figure 2-8 for the dependencies between

these modules, explained below. Each item in this list corresponds to its respective

label in the figure.

1. First, the DeepMineSearch accepts a list of candidate MLPipeline objects to

consider.

2. A BTB selector might help search over the pipeline space, allocating resources

to pipelines that seem to perform better. Similarly, for a given pipeline, a BTB

tuner might help search over the hyperparameter space, proposing interesting

candidates to evaluate next. Note that while using BTB isn’t required, it might

help developers when writing search algorithms.

3. The ScorePipeline assigns a score to a potential pipeline and hyperparameter

configuration. If using BTB, a developer can use this score to train the tuners

and selectors.

4. Evaluating multiple hyperparameter configurations can easily be done in parallel,

using the Compute class.

5. A scoring algorithm might require running the pipeline on independent bootstraps

or subsamples. Because these are embarrassingly parallel, this can easily be

parallelized using the Compute class.
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Search

BTB

Compute

MLBlocks

Score

dataset, problem type
and scoring function optimal pipeline

12

35

4

Figure 2-8: The DeepMining workflow. Each of the labeled relationships corresponds
to its respective list item in Section 2.4.
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Chapter 3

Data Input

The DeepMining system works on a variety of data formats: these include image,

audio, text, single-table, multi-table, graphs, and multi-graphs. This classification of

datatypes is motivated by the Data-Driven Discovery of Models (D3M) program, a

program that aims to further automated machine learning efforts [1]. The Data to

AI Group, along with FeatureLabs [2], participates in a competition hosted by D3M

to essentially solve the pipeline search problem. In this competition, teams are given

a dataset, along with a problem type, and are tasked with outputting a model that

accurately solves that problem.

The D3M competition provides datasets in a very specific format, and each dataset

falls under one of these datatypes. As many of the pipelines in MLBlocks were written

for the D3M competition, we found this a natural way to classify the different datatypes

one might encounter in DeepMining. We aim to support a variety of datatypes to

support any pipeline search problem a data scientist might wish to solve.

As each of these datatypes can be represented in a variety of ways, agreeing on a

standardized representation is crucial. Specifically, the fit method in the MLPipeline

class accepts three arguments: the samples (X), the labels (y), and optional auxiliary

data (fit_params). In this chapter, we summarize each of these datatypes, and how

they should be represented when inputted to DeepMining.
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3.1 Image

For image pipelines, we expect the input format to be that of a matrix, with one

row for each image. These can be simple RGB values loaded from image files, or a

flattened binary representation in the case of grayscale images. See Figure 3-1.

As an example, we have implemented pipelines that work on the MNIST dataset.

⋮[ ][255,255,255],[12,25,37],...

Figure 3-1: Format for the image datatype. In this example, each image is a 3-

dimensional matrix of dimension height × width × 3, where the final dimension is

RGB values. We concatenate the rows of each image, resulting in a (height × width)

× 3 matrix for each image.

3.2 Audio

The audio pipelines implemented thus far ingest audio data from WAV files, which can

be decomposed into a list of segments. Therefore, we expect each training example to

be a list of lists, each of which represents a segment. See Figure 3-2.

♫
⋮[ ][3,4,...],[3,...],[4,...],... 

Figure 3-2: Format for the audio datatype. Assuming each sample is loaded from a

WAV file, each training example is a list of lists, each of which represents a segment.
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3.3 Text

For text pipelines, we expect each training example to be one ASCII string representing

the text. If the text is comprised of multiple lines or words, they should be concatenated.

See Figure 3-3.

⋮[ ]“Hello World. Once upon a time...” 

Figure 3-3: Format for the text datatype. Every example should be one concatenated

string: if the text is divided into multiple lines or words, these should be concatenated.

3.4 Single-Table

The single-table datatype represents any matrix data that doesn’t fall into the previous

categories: this data is already provided as matrix, so no special transformations are

necessary. See Figure 3-5.

As an example, we have a dataset of housing prices in Boston, offered by scikit-learn.

⋮[ ]2.4, 3.4, 4.7, ... 

Figure 3-4: Format for the single-table datatype. This data is already inputted as a

matrix, so no specific transformations are necessary.
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3.5 Multi-Table

The multi-table datatype refers to matrix data that is augmented with extra matrix

data, which shares a key with the primary matrix. For example, the primary key of an

auxiliary matrix might be a foreign key in the primary matrix. In this case, X refers

to primary matrix, we let fit_params contain the auxiliary matrix data, along with

metadata about the foreign keys and primary keys. See Figure ??.

For example, we have a dataset of retail store data, where the primary table stores

transactions, and an auxiliary table stores information about the products involved in

each transaction.

0, 2, 4, 10, ...
⋮[ ]

0, 2, 4, 10, ...
⋮[ ]

Figure 3-5: Format for the multi-table datatype. The primary matrix is provided as

X, while any auxiliary matrix data is provided in fit_params. In addition, we must

provide metadata about the foreign keys in the primary table, and which auxiliary

tables they refer to.

3.6 Graph

The graph datatype refers to matrix data that is augmented with a graph, depicting

the relationship between samples in the matrix. The graph data structure is stored as

a nested data structure D (likely a Python dictionary), where D[a][b] stores auxiliary

information about the relatonship between rows a and b. For this datatype, we let X

refer to the primary matrix, while fit_params contains the graph represented as a

Python dictionary. See Figure 3-7.
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As an example, we have a dataset of Amazon products, along with an auxiliary

data structure depicting which products are frequently co-purchased.

{
  0: {1: [...], 2: [...],...},
               
}

4, 15, 3, 10, ...
⋮[ ]

⋮

Figure 3-6: Format for the graph datatype. The primary matrix is provided as X,

while the auxiliary graph is represented as a nested data strcutre in fit_params.

3.7 Multi-Graph

Similarly, the multi-graph datatype refers to matrix data that is augmented with

multiple graphs, depicting the relationship between rows in the matrix. For this

datatype, we let X refer to the primary matrix, while fit_params contains a list of

graphs, each represented as a Python dictionary. See Figure ??.

In our experience, multi-graph datasets are often used to accompany graph-

matching problems. As an example, consider a Facebook user dataset, where the rows

depict users, two auxiliary graph structures depict relationships between users, and

the problem posed is graph matching.
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{
  0: {1: [...],2: [...],...},
        
}

{
  3: {0: [...],1: [...],...},
              
}

0, 12, 4, 10, ...
5, 8, 12, 15, ...]

⋮
[

⋮

⋮

Figure 3-7: Format for the multi-graph datatype. Format for the graph datatype. The

primary matrix is provided as X, while the auxiliary graphs are represented as a list of

Python dictionaries in fit_params.
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Chapter 4

Score

When evaluating a dataset for a given pipeline and hyperparameter configuration,

we choose the optimal configuration based on a particular scoring function. This

might be an accuracy score, f1-score, least-squares loss, etc. When solving the pipeline

search problem with DeepMining, a user needs to provide the scoring function used to

measure accuracy.

However, with large datasets, it might be unfeasible to score every candidate

pipeline using the entire dataset. When refactoring DeepMining, we realized that

while the search function requires the score for a given pipeline and hyperparameter

configurationt, it is agnostic to how this score is computed: by this, we refer to how

the data is partitioned or subsampled, and how these intermediate scores are coalesced.

As a result, we abstract this functionality into the ScorePipeline class. This way,

developers can easily create new scoring methods, and users can switch between these

methods with minimal effort.

In this chapter, we discuss the design of the ScorePipeline class, demonstrate

potential use cases, and justify that this abstraction suffices for most searching and

scoring algorithms

39



4.1 The ScorePipeline class

To implement a scoring method in DeepMining, a developer need only subclass the

ScorePipeline class, which requires implementing the following methods. For a

summary, refer to Table A.1.

• The __init__ function, which initializes a particular scoring method. This

method accepts arguments specific to the computation framework: these might

include the number of subsamples, size of each subsample, etc.

• The score function, which evaluates a pipeline given training data, validation

data, and a scoring function. Specifically, this method accepts the following

arguments:

– pipeline: The MLPipeline object to be evaluated: developers should set

any relevant hyperparameters before passing a pipeline into this function.

– X_train, y_train, X_val, y_val: The training data, training labels, vali-

dation data, and validation labels, represented as numpy array-like objects.

For more information about how to represent different datatypes in a

standardized format, refer to Chapter 3.

– score_func: The scoring function to use, which takes in a test set (X)

and predictions (y), and returns a score. If score_func is None, this

method uses a default scoring function. For example, this might include

functions like F1 score, precision score, etc., many of which are available in

sklearn.metrics.

This abstraction should be sufficient to implement any scoring method: as long

as developers have access to the pipeline, dataset, and scoring function, they have

complete autonomy over how to perform the computation.
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4.2 Implemented Scoring Methods

To demonstrate the feasibility of the ScorePipeline class, we implement three scoring

methods: ScoreDefault, ScoreCV, and ScoreBLB.

ScoreDefault: In the ScoreDefault class, we implement a basic scoring method

that fits the pipeline on the training data, and runs the scoring function the validation

data.

ScoreCV: The ScoreCV class runs 𝑘-fold cross validation (defaulting to 𝑘 = 3) using

the train and validation data, and returns the average score of all 𝑘 trials.

To elaborate, 𝑘-fold cross validation involves dividing a dataset 𝐷 into 𝑘 folds

𝑑1, 𝑑2, . . . 𝑑𝑘. For each 𝑖 = 1 . . . 𝑘, we fit the model on all but 𝑑𝑖, and validate using 𝑑𝑖,

to generate some score 𝑠𝑖. Finally, we return 1/𝑘
∑︀𝑘

𝑖=1 𝑠𝑘.

ScoreBLB: In the ScoreBLB class, we implement the Bag of Little Bootstraps (BLB)

method proposed in [5]. BLB enables the approximation of scores with the same

theoretical guarantees as the bootstrap. Bootstrapping involves running the model

on resamples of the data; however, because the resamples are around 63% the size

of the original dataset, it becomes unfeasible to use the bootstrap in a massive data

setting. BLB mitigates this by adding another layer of subsampling, first creating a

“bag” from which bootstraps are created. This approach provides similar guarantees

to that of the bootstrap, while significantly reducing computational overhead.

BLB works as follows: consider a dataset with 𝑛 elements, and choose a “bag” of

size 𝑛0.5 ≤ 𝑏 ≤ 𝑛 without replacement. Then, sample from this bag with replacement

to create a bootstrap of size 𝑛. The score returned by BLB is the averages of the

scores of each resample.

As another optimization, instead of actually repeating elements with a resample, we

simply weigh the elements of the bag by a multinomial sample 𝑛1, 𝑛2, . . . 𝑛𝑏 such that∑︀𝑏
𝑖=1 𝑛𝑖 = 𝑛. Luckily, many estimators already support a weighted data representation

(specifically represented by the sample_weight parameter in scikit-learn), so the

implementation is not difficult.

Therefore, BLB only operates on 𝑏 data points instead of 𝑛: in particular, the
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authors claim that 𝑏 = 𝑛0.6 is a good value for 𝑏. Note that as 𝑛 gets very large, the

benefits of this approach are clear. When 𝑛 = 109, for example, using a bootstrap

might be unfeasible: however, Bag of Little Bootstraps only operates on approximately

250, 000 points.

See Algorithm 1 for pseudocode of the algorithm. Because the original implemen-

tation of DeepMining relied on BLB, and because of its significant guarantees on large

datasets, we decided to implement BLB in the new iteration of DeepMining as well.

Users can provide values for 𝛾 (such that 𝑏 = 𝑛𝛾), 𝑟, and 𝑠, although they are set to

default values recommended by the authors.

Algorithm 1 Bag of Little Bootstraps (BLB)
Input: 𝑋1...𝑛: data points, 𝑏: bag size, 𝑠: number of bags,

𝑟: number of samples in each bag, 𝐸: scoring function,
𝑦: desired function/statistic

Output Estimate of 𝑦
1: for 𝑗 = 1 to 𝑠 do
2: Randomly sample 𝑏 data points without replacement, forming a bag.
3: 𝑋𝑗

1...𝑏 ∼ random(𝑋1...𝑛)
4: for 𝑘 = 1 to 𝑟 do
5: ◁ Sample the counts
6: (𝑛1, 𝑛2, . . . 𝑛𝑏) ∼ Multinomial(𝑛,1𝑏/𝑏)
7: ◁ Estimate 𝑦 on the bootstrap sample using 𝑋𝑗 and the counts as weights
8: 𝑒𝑠𝑡𝑘 ∼ 𝐸(𝑋𝑗

1...𝑏, 𝑛1, . . . 𝑛𝑏)
9: end for

10: 𝑦𝑗 = 𝑟−1
∑︀𝑟

𝑘=1 𝑒𝑠𝑡𝑘
11: end for
12: return 𝑠−1

∑︀𝑠
𝑗=1 𝑦𝑗

4.3 Simplicity of Implementation

Implementing a new scoring method using the ScorePipeline class is reasonably

simple. For example, ScoreDefault and ScoreCV required less than 50 lines of code,

and ScoreBLB required significantly less than 100 lines of code (see Table 4.1). This

is because Bag of Little Bootstraps aligns well with the functionalities provided by

sklearn, MLBlocks, and ScorePipeline classes.

42



Class Number of Lines

ScorePipeline (base class) 47

ScoreDefault 23

ScoreCV 40

ScoreBLB 96

Table 4.1: The number of lines needed to implement each of the scoring methods.

As another optimization, note that in BLB, each bootstrap is evaluated in an

embarrassingly parallel fashion. Therefore, using a computation framework like

Spark, or a simple threading library, can significantly improve performance. To

address this, we add the Compute library to DeepMining, which lets users perform

simple MapReduce computations agnostic to the framework used: modifying the

implementation to support parallel computations requires less than ten lines of code.

This optimization will be discussed in Chapter 6.

Therefore, developers can easily use the ScorePipeline abstraction to implement

new scoring methods in DeepMining.

4.4 Simplicity of Application

In addition, developers can easily use switch between different scoring methods when

running DeepMining. See Figure 4-1 for an example. This is particularly useful when

implementing searching algorithms, which will be described in Chapter 5.
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1 # Import a pipeline from the MLBlocks library.
2 pipeline = TraditionalImagePipeline ()
3
4 # We use the F1 scoring function from scikit -learn.
5 def score_func (*args):
6 return sklearn.metrics.f1_score (*args , average='micro')
7
8 # Fit the pipeline to the data , and score using
9 # cross -validation.

10 scorer = ScoreCV ()
11 score = scorer.score(
12 pipeline ,
13 X_train , y_train , X_val , y_val ,
14 score_func=sklearn.metrics.accuracy_score
15 )
16
17 # Fit the pipeline to the data , and score using
18 # Bag of Little Bootstraps ,
19 scorer = ScoreBLB(gamma =0.7, s = 5, r = 10)
20 score = scorer.score(
21 pipeline ,
22 X_train , y_train , X_val , y_val ,
23 score_func=score_func
24 )

Figure 4-1: Switching between different scoring methods.
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Chapter 5

Search

The overarching goal of DeepMining is the following: given a dataset, a problem,

and a scoring function, find the pipeline that optimizes that score. This is a difficult

problem because it involves several layers: finding pipelines that might be relevant to

the problem, and performing hyperparameter optimization on each of these pipelines.

Thoroughly searching such a large space is unfeasible, as it involves fitting each

candidate pipeline to the entire dataset. If the search space is large, even using an

algorithm like Bag of Little Bootstraps might not suffice. Therefore, the tradeoff

between exploration and exploitation is crucial: a developer needs to know which

candidates to consider, and how much resources to allocate to each candidate.

Finding which pipelines to consider for a given dataset and problem is a difficult

task: it involves metadata about each pipeline to decide whether it is compatible

with a dataset, and whether it might perform well for a particular problem or scoring

function. We continue this discussion in Chapter 8, which discusses future work: in

this chapter, we focus on tuning hyperparameters given a predefined list of candidate

pipelines.

The original implementation of DeepMining relied on a Gaussian Copula Process

(GCP) to perform hyperparameter optimization. However, efficient hyperparameter

optimization becomes increasingly important as machine learning dominates the tech

industry, and new algorithms are proposed on a regular basis. Therefore, while GCP

might exceed baseline performance, we decided that the implementation of DeepMining
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shouldn’t depend on any particular search algorithm; instead, it should adjust to

advancements in the field. To address this, we abstract out search functionality using

the DeepMineSearch class.

In this chapter, we discuss the design of the DeepMineSearch class, demonstrate

potential use cases, and justify that this abstraction suffices for most searching

algorithms.

5.1 The DeepMineSearch Class

To implement a search algorithm in DeepMining, a developer need only subclass the

DeepMineSearch class, which requires implementing two methods. In addition, the

developer has access to some helper functions that might help write efficient search

algorithms. We discuss these in the following two sections.

5.1.1 User-Facing Methods

To implement a search algorithm, a developer needs to implement the __init__ and

search functons, described below. These two methods are user-facing: a user can

initialize a DeepMineSearch object using this schema, then perform hyperparameter

search by calling the search function. For a summary of these methods, refer to Table

A.3.

• The __init__ function, which simply initializes the search algorithm with a

given dataset, problem, and scoring function. The function takes in the following

arguments:

– scorer: The scoring method, which must implement the ScorePipeline

class. For example, this could be Bag of Little Bootstraps (ScoreBLB) or

cross-validation (ScoreCV).

– X_train, y_train, X_val, y_val: The training data, training labels, vali-

dation data, and validation labels, represented as numpy array-like objects.
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For more information about how to represent different datatypes in a

standardized format, refer to Chapter 3.

– score_func: The scoring function to use, which takes in a test set (X)

and predictions (y), and returns a score. If score_func is None, this

method uses a default scoring function. For example, this might include

functions like F1 score, precision score, etc., many of which are available in

sklearn.metrics.

– search_space: The list of functions to tune, represented as a list of

MLPipeline objects. To reiterate, an MLPipeline might be constructed in

two ways: first, it might be a predefined pipeline, such as the

TraditionalImagePipeline. In addition, an MLPipeline might be con-

structed by directly composting MLBlock primitives, by referring to the

JSON files specified for each one. For example,

MLPipeline.from_ml_json([’HOG’, ’random_forest_classifier’])

represents a pipeline consisting of the histogram of oriented gradients

(HOG) primitive, followed by the random forest classifier.

– output_dir: Where to save logs during the search procedure. Defaults to

saved_models/.

• The search function, which performs hyperparameter optimization over a given

list of candidate pipelines. Here, a developer might request algorithm-specific

arguments, such as the number of iterations, or the number of hyperparameter

candidates to evaluate in parallel.

5.1.2 Developer-Facing Methods

When designing the DeepMineSearch class, we first considered a pull architecture,

where the developer yields one hyperparameter configuration at a time (perhaps

using a Python generator), and the DeepMineSearch class automatically scores these

configurations and logs information about them. However, we instead decided to

implement a push architecture, where the developer has autonomy over when to
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score or save hyperparameter configurations. This gives the developer freedom when

deciding how many configurations to run, and when to save information about those

configurations. In addition, not confining to a generator lets developers implement

arbitrarily complex algorithms.

Therefore, as developers are implementing a search algorithm, they have the option

to score a hyperparameter configuration at whatever point they desire. In addition,

they can also save information to the history, which stores information about each

configuration. This information is also periodically persisted in the summary.json file:

see Table 5.1 for the log schema, and Figure 5-1 for an example log entry.

Key Value

pipeline_filepath The filepath of the pickled MLPipeline object

params A JSON containing the hyperparameters for the
MLPipeline object in the form {key:value}.

pipeline_steps A list of the MLBlock primitives comprising the MLPipeline
object. Each of these primitives has an associated JSON file
in the MLBlocks repository.

partition_size If the pipeline was run on a subsample of the data, indicates
the size of the subsample. If it was run on the entire
dataset, partition_size is null.

score The score received by this pipeline on the (subsample of)
the dataset, as returned by the scorer.

Table 5.1: The schema for the JSON log.

In addition to the user-facing methods, the DeepMineSearch class also offers the

following two methods, which developers might find useful when implementing search

algorithm. For a more detailed description of these two functions, refer to Table A.2.

• The score method, which scores a pipeline and hyperparameter configuration

on the dataset. This method accepts the following parameters:

– pipeline: The MLPipeline object to score.

– hyperparams: The hyperparameters to pass into the pipeline, represented

a dictionary from name to value. For example, {’criterion’: ’mse’,
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1 {
2 "pipeline_filepath": "saved_models /2018 -05 -14 -16:32:09/ ←˒

QTV8PH9YEN.pickle",
3 "pipeline_steps": ["HOG", "rf_classifier"],
4 "params": {
5 "num_orientations": 9,
6 "num_cell_pixels": 8,
7 "num_cells_block": 3,
8 "criterion": "entropy",
9 "max_features": 0.4659799248256272 ,

10 "max_depth": 4,
11 "min_samples_split": 4,
12 "min_samples_leaf": 3,
13 "n_estimators": 100,
14 "n_jobs": -1
15 },
16 "partition_size": null ,
17 "score": 0.92
18 }

Figure 5-1: An example of a JSON log entry.

’min_samples_split’: 2, ’max_features’: 0.39323, ...} might be

an example of such a dictionary, for the traditional image pipeline.

– partition_size: If provided, only evaluates the pipeline on a subsample

of the data with size partition_size.

• The save method, which saves information about a scored hyperparameter

configuration to the log. This method has the same arguments as the score

function, except users also provide the score for that trial.

5.2 Implemented Search Algorithms

The DeepMineSearch class allows developers to create algorithms that search over two

levels: the template space and the hyperparameter space. The developer can simply

tune each template equally, or if she chooses, she can intelligently allocate resources

between these templates.

To demonstrate the potential for the DeepMineSearch class, we implemented a

few search algorithms: grid search, a generalized bandit search,and Hyperband [6].

Each of these algorithms works well for one template, and if desired, can be extended

to algorithmically decide which templates to focus on. These algorithms are described
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in the following subsections.

5.2.1 Grid Search

First, we implement a simple grid search, without using any of the facilities in

BTB. This primary purpose of this is to demonstrate that a developer can create

arbitrary hyperparameter search algorithms solely using the facilities provided in the

ScorePipeline, MLBlocks, and Compute classes.

A user provides a gridding parameter, which determines how many values to check

for every hyperparameter. Then, most of the logic involves reading the MLPipeline

object, dividing each hyperparameter into intervals, and using itertools to create an

iterator over every hyperparameter configuration. Then, the algorithm simply loops

through these configuration, scores them, and keeps track of the best configuration.

5.2.2 Bandit Search

In the SearchBTB class, we implement a generalized bandit search that searches over

both the pipeline space and the hyperparameter space. This class relies on the Bayesian

Tuning and Bandits (BTB) library, also developed by the Data to AI group.

This search algorithm operates on two levels. First, over the pipeline space, we use

a selector imported from BTB, which chooses which pipelines to consider by treating

the task as a multi-armed bandit problem.

On the second level, we use a tuner imported from BTB, which forms a model

over the hyperparameter space, and proposes candidates to explore next. In addition,

BTB also allows the user to “grid” the hyperparameter space into discrete intervals,

so SearchBTB does support grid search: however, we still implement SearchGrid to

demonstrate that the algorithm can be easily implemented without BTB.

Simplified code for SearchBTB is available in Figure 5-2. Note that the

self.initialize_tuner method, provided by the DeepMineSearch class, simply

integrates the MLPipeline object with BTB to create a tuner compatible with that

pipeline.
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1 class SearchBTB(DeepMineSearch):
2 def search(self , max_candidates =100,
3 tuner_class=tuning.Uniform ,
4 selector_class=select.Uniform):
5 # Create a selector over search_space ,
6 # which contains all candidate pipelines.
7 selector = selector_class(self.search_space)
8
9 # This stores the scores recorded for every pipeline ,

10 # in sequential order.
11 scores = {pipeline : [] for pipeline in self.search_space ←˒

}
12
13 # This stores a tuner for every pipeline.
14 tuners = {
15 pipeline: self.initialize_tuner(pipeline , tuner_class ←˒

)
16 for pipeline in self.search_space
17 }
18
19 # The total number of candidates should not exceed ←˒

max_candidates.
20 total_candidates = 0
21
22 # The number of candidates to run every time a pipeline
23 # is proposed by he selector. This value is configurable.
24 candidates_per = 10
25
26 while total_candidates < max_candidates:
27 pipeline = selector.select(scores)
28 num_proposals = min(
29 candidates_per ,
30 max_candidates - total_candidates
31 )
32 for _ in range(num_proposals):
33 hp = tuners[pipeline ]. propose ()
34 score = self.score(pipeline , hp)
35 self.save(pipeline , hp, score , save=True)
36 tuners[pipeline ].add(hp, score)
37 total_candidates += num_proposals

Figure 5-2: A simplified implementation of the SearchBTB class.
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5.2.3 Hyperband

The tradeoff between exploration and exploitation is crucial when performing hyper-

parameter optimization, especially when there are resource constraints: for example,

we might have a limited amount of time to tune the model. While the general bandit-

based algorithm in SearchBTB determines which pipelines to focus resources on, it

does not specify how those resources should be allocated. The Hyperband algorithm,

proposed in [6], treats hyperparameter optimization as a multi-armed bandit problem

where a predefined resource like iterations, data samples, or features is allocated to

randomly sampled configurations.

The first step of Hyperband is the SuccessiveHalving procedure, which takes a

set of 𝑛 hyperparameter configurations, a resource budget 𝐵, and allocates resources to

find the most promising candidates. The core of the algorithm is as follows: uniformly

allocate resources to 𝑛 candidates, evaluate the candidates subject to those resources,

discard the worst half, and repeat this procedure until one candidate remains. Note

that instead of retaining the best 𝑛/2 of the candidates, we parametrize this by

introducing 𝜂, such that we retain the best 𝑛/𝜂 candidates in every iteration.

However, the choices of 𝐵 and 𝑛 are unclear: the developer must decide whether to

spend more resources on a fewer set of candidates, or fewer resources on a larger number

of candidates. To address this, the complete Hyperband algorithm is as follows: users

specify 𝑅, the maximum number of resources to allocate to any configuration, and

𝜂, the proportion of resources to discard in every iteration of SuccessiveHalving.

Then, the algorithm iterates through several (𝑛,𝐵) pairs that are inversely proportional

to each other, thereby addressing the exploration-exploitation tradeoff.

For complete pseudocode, refer to Algorithm 2. Here, we explain some of the

functions referred to in the pseudocode, and how they might be implemented in

DeepMining:

• The get_hyperparameter_configs(𝑛) function returns 𝑛 hyperparameter con-

figurations. The authors of the paper left this open-ended: while developers can

simply choose configurations randomly, they welcome developers to explore with
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more intelligent methods. The easiest way to implement this in DeepMining is

the BTB library, which lets developers switch between different tuners, which

are trained using the scores from the search algorithm.

• The run_then_return_val_loss(𝑇 ) function runs the 𝑛 hyperparameter con-

figurations on the provided dataset. This can be easily implemented using the

scorer, which subclasses the ScorePipeline class.

• The top_k(𝑇, 𝐿, 𝑘) function simply returns the best 𝑘 hyperparameter configura-

tions from 𝑇 , keyed by the validation losses in 𝐿. While this can be implemented

in 𝑂(|𝑇 |) using QuickSelect, the constant factor is high, and it suffices to

perform an 𝑂(|𝑇 | log |𝑇 |) algorithm using sorting.

Therefore, the Hyperband algorithm should be useful for training on large datasets.

We implement the SearchHyperband class, which runs Hyperband using subsample

size as the constrained resource: however, depending on the context in which it is

used, this can be substituted for time, iterations, etc.

Algorithm 2 Hyperband
Input: 𝑅: resources per configuration,

𝜂: proportion to discard during SuccessiveHalving
Initialization: 𝑠𝑚𝑎𝑥 = ⌈log𝜂 𝑅⌉, 𝐵 = (𝑠𝑚𝑎𝑥 + 1)𝑅

1: for 𝑠 = {𝑠𝑚𝑎𝑥, 𝑠𝑚𝑎𝑥 − 1, . . . , 1, 0} do
2: ◁ Initialize (𝑛, 𝑟) parameters for SuccessiveHalving
3: 𝑛 = ⌈𝐵

𝑅
𝜂𝑠

𝑠+1
⌉, 𝑟 = 𝑅𝜂−𝑠

4: ◁ Get 𝑛 hyperparameter configurations by any method.
5: 𝑇 = get_hyperparameter_configs(𝑛)
6: ◁ Begin SuccessiveHalving
7: for 𝑖 = {0, 1, . . . , 𝑠− 1, 𝑠} do
8: 𝑛𝑖 = ⌊𝑛𝜂−𝑖⌋
9: 𝑟𝑖 = 𝑟𝜂𝑖

10: ◁ Score each configuration, and discard all but the top 1/𝜂
11: 𝑇 = run_then_return_val_loss(𝑇 )
12: 𝑇 = top_k(𝑇, 𝐿, ⌊𝑛𝑖/𝑛⌋)
13: end for
14: end for
15: return The configuration with the best validation loss.
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5.3 Simplicity of Implementation

Therefore, because of the abstractions provided by ScorePipeline, MLPipeline, and

BTB, implementing a scoring algorithm in DeepMining requires very little code. As

seen in Table 5.2, each of the algorithms implemented requires less than 100 lines of

code.

In addition, each of these algorithms can be easily parallelized, because hyperpa-

rameter configurations can be evaluated independently. For example, in SearchBTB

and SearchGrid we can simply create batches of a fixed size, and in SearchHyperband

we naturally batch hyperparameters when running the run_then_return_val_loss

function. Because these computations are embarrassingly parallel, we abstract this

out using the Compute class, which lets users run MapReduce style computations

using any computation framework. For example, the library supports Spark, Dask,

and Pathos Multiprocessing libraries. Modifying these implementations to support

parallelization requires less than ten lines of code: this optimization will be discussed

in Chapter 6.

Class Number of Lines

DeepMineSearch (base class) 152

SearchBTB 59

SearchGrid 73

SearchHyperband 66

Table 5.2: The number of lines needed to implement each of the search algorithms.

5.4 Simplicity of Application

In addition, users can easily switch between different search algorithms, while only

changing the initialization of the DeepMineSearch object. For example, Figure 5-3

demonstrates how a user might train the MNIST problem using different search algo-

rithms. This implementation uses MNIST data already provided by scikit-learn.
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1 # We import MNIST data from scikit -learn , and split it
2 # into train and validation sets.
3 mnist = fetch_mldata('MNIST original ')
4
5 X_train , X_val , y_train , y_val = train_test_split(
6 mnist.data ,
7 mnist.target ,
8 train_size =1000,
9 test_size =300

10 )
11
12 # We use the F1 score , imported from scikit -learn.
13 def score_func (*args):
14 return f1_score (*args , average='micro')
15
16 # We only tuner over a traditional image pipeline.
17 image_pipeline = TraditionalImagePipeline ()
18
19 # This can be changed to ScoreDefault , for example.
20 scorer = ScoreBLB ()
21
22 # This can easily be changed to SearchHyperband , SearchGrid , etc.
23 dm = SearchBTB(
24 ProblemType.MULTICLASS ,
25 scorer ,
26 data ,
27 score_func=score_func ,
28 search_space =[ image_pipeline],
29 output_dir="saved_models/"
30 )
31
32 # This will search the hyperparameter space , log the history ,
33 # and save it in output_dir.
34 dm.search ()
35 print(dm.best_pipeline)

Figure 5-3: An example usage of the DeepMineSearch class.
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Chapter 6

Compute

Tuning machine learning pipelines on different hyperparameter configurations and

datasets involves several embarrassingly parallel computations. These computations

occur at many levels of the tuning process: for example, if we are considering several

candidate pipelines for a given dataset, these can be tuned in parallel. At a deeper level,

we can evaluate a given pipeline on several hyperparameter configurations in parallel.

Finally, when evaluating a pipeline on a particular hyperparameter configuration, we

can evaluate dataset subsamples in parallel.

Each of these computations follows the straightforward MapReduce paradigm: for

example, when running Bag of Little Bootstraps, we simply compute a score for each

of the 𝑟 subsamples, then take the average of these scores. We claim that in general,

a MapReduce framework is sufficient to implement scoring and searching algorithms

in DeepMining. With that in mind, a developer might use several computation

frameworks to perform these computations: for example, one might prefer Spark for

very large workloads, a simple threading library for small or medium workloads, or a

trivial sequential implementation for debugging purposes.

We argue that DeepMining should be agnostic of the computation framework used;

therefore, we abstract out this functionality into the Compute class, which lets any

user implement or run computations on any computation framework that supports

MapReduce.

In this chapter, we discuss the design of the Compute class, demonstrate potential
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use cases, and justify that this abstraction suffices to implement most searching and

scoring algorithms.

6.1 The Compute Class

To implement a computation framework in DeepMining, a developer need only subclass

the Compute class, which requires implementing the following two methods. See Table

A.4 for a summary of these two functions.

• The __init__ method, which initializes the Compute instance. This method

accepts the arguments that are specific to the computation framework: these

might include the number of threads, location of the cluster, etc.

• The run method, which runs a MapReduce computation on a given map function,

reduce function, and list of arguments. Specifically, this function accepts the

following arguments:

– arguments: A list of arguments in the form [’args’: *args, ‘kwargs’:

**kwargs]. We decided on this representation to be standardized between

different computation frameworks.

– map_function: Any function that takes some *args and **kwargs as

input, and returns a value.

– reduce_function: Optionally, a function that takes in two values, and

returns a result. For MapReduce computations, this function is generally

associative.

With a simple interface, this abstraction should allow developers to introduce

new computation frameworks into the DeepMining platform. At the same time, this

abstraction suffices to implement many optimizations to search and scoring algorithms.
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6.2 Implemented Computation Frameworks

To demonstrate the versatility of this abstraction, we implemented several computation

frameworks using the Compute class. These include SequentialCompute (which uses

Python), PythonMultiProcessingCompute (which uses the Pathos Multiprocessing

library), DaskCompute, and SparkCompute. In this section, we discuss each of these

implementations.

SequentialCompute: In the SequentialCompute class, we implement a simple

sequential implementation of MapReduce in pure Python. This is useful for debugging

purposes, while also demonstrating the feasibility and simplicity of the API.

PythonMultiProcessingCompute: In the PythonMultiProcessingCompute class,

we implement a MapReduce framework using the Pathos Multiprocessing library. The

framework performs computations using a pool of worker processes, where the user

specifies the number of processes in the initialization function. This is particularly

helpful for light to medium workloads, offering significant performance benefits without

large overhead.

SparkCompute: In the SarkCompute class, we implement MapReduce using the

Spark cluster-computing framework [10]. In the initialization function, users have the

option to specify the number of partitions, as well as the location of the cluster: Spark

can either run locally, or on an Amazon Elastic Compute Cloud instance. Spark is

useful for high workloads, but incurs more overhead.

DaskCompute: In the DaskCompute class, we implement Dask, a lightweight task

scheduler and parallel computing library for analytics [9]. Depending on the workload,

Dask might perform better than Spark because it has less overhead.

6.3 Simplicity of Implementation

We demonstrate that implementing a new computation framework is simple, as the

abstraction aligns well with existing computation frameworks. As an example, consider

the implementation of SequentialCompute (see Figure 6-1), which demonstrates the
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1 class SequentialCompute(Compute):
2 """
3 Class for simple sequential computations.
4 """
5 def run(self , arguments , map_function , reduce_function=None):
6 output = [map_function (*args["args"], **args["kwargs"])
7 for args in arguments]
8 if reduce_function is not None:
9 output = reduce(reduce_function , output)

10 return output

Figure 6-1: The implementation of SequentialCompute.

minimum work required to implement run.

Apart from initializing the framework and parsing the arguments, implementing a

more complex computation framework requires little added effort. This is because

most of these frameworks already support MapReduce computations in some form.

Therefore, we achieve normalization without much effort, which enables us to easily

switch between different frameworks. This simplicity is reflected in Table 6.1, which

demonstrates that even implementing Spark or Dask requires substantially fewer than

100 lines of code.

Class Number of Lines

SequentialCompute 13

PythonMultiProcessingCompute 25

SparkCompute 73

DaskCompute 20

Table 6.1: The number of lines needed to implement each of the computation frame-
works.

6.4 Simplicity of Application

In this section, we demonstrate how users can use the Compute module to easily

switch between different computation frameworks. To do so, consider the example in

Figure 6-2, in which the map function performs simple arithmetic operations, and the

reduce function sums the results. Note that the same computation can be seamlessly
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1 def run_test(self , compute):
2 args = [{"args": (i, i), "kwargs": {"test": 1}} for i in ←˒

range (5)]
3 reduce_func = lambda x, y : x + y
4 def map_func(x, y, test =1):
5 return x + y
6 ans = compute.run(args , map_func , reduce_function=reduce_func ←˒

)
7 assert ans == 20
8
9 c = SequentialCompute ()

10 run_test(c)
11
12 c = PythonMultiProcessingCompute(
13 num_python_processes =10
14 )
15 run_test(c)
16
17 c = DaskCompute ()
18 run_test(c)
19
20 c = SparkCompute(
21 my_spark_directory="/Users/akshay/Documents/spark",
22 spark_cluster_location=SparkCompute.LOCAL
23 )
24 run_test(c)

Figure 6-2: The implementation of a simple MapReduce computation using various
computation frameworks.

integrated with each of the aforementioned computation frameworks. Apart from

defining the map and reduce functions, defining a computation takes a few lines

of code, and switching between different frameworks is as simple as replacing the

initialization of the Compute object.

6.5 Integration with DeepMining

Therefore, with the Compute abstraction, adding parallelization to the different aspects

of DeepMining requires little effort. In fact, the following modules were first written

without performance in mind, but were modified to use Compute objects with few

changes to the core logic. In this section, we discuss how parallelization can easily be

added to improve the ScorePipeline and DeepMineSearch classes.

Integration with DeepMineSearch: When searching through the hyperparameter

space, one can evaluate candidate configurations in an embarrassingly parallel fashion.

The SearchBTB class, for example, was modified to include a max_parallel and
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Without Compute

1 num_candidates = 0
2 while num_candidates < max_candidates:
3 hp = tuner.propose ()
4 score = self.score(pipeline , hp)
5 self.save(pipeline , hp, score , save=True)
6 num_candidates += 1

With Compute

1 def score_pipeline_func(hp):
2 return (hp , self.score(copy.copy(pipeline), hp))
3
4 def evaluate(hyperparam_arr):
5 args = [{"args": [hp], "kwargs": {}} for hp in hyperparam_arr ←˒

]
6 results = compute_framework.run(args , score_pipeline_func)
7 for hp, score in results:
8 self.save(pipeline , hp, score , save=True)
9

10 num_candidates = 0
11 while num_candidates < max_candidates:
12 hyperparam_arr = [tuner.propose () for _ in range(num_parallel ←˒

)]
13 evaluate(hyperparam_arr)
14 num_candidates += len(hyperparam_arr)

Figure 6-3: The integration of Compute into the SearchBTB class requires less than
ten lines of code. If the tuner has a finite number of candidates, extra logic needs to
be added in case tuner.propose() returns None.

compute_framework argument. Now, every time the number of proposed candidates

reaches max_parallel, the batch can be evaluated in parallel. See Figure 6-3 for the

implementation.

Integrating Compute with SearchHyperband was simpler, because the Hyperband

algorithm already naturally evaluates a pipeline on a batch of hyperparameter config-

urations. See Figure 6-4 for the changes required.

Integration with ScorePipeline: In addition to search, Compute class was used

to improve to ScoreBLB class, which performs Bag of Little Bootstraps (BLB). The

algorithm creates 𝑠 bags, each of which can be evaluated independently; therefore, the

Compute object simply takes in the list of bags as its arguments, and score_bag as

its map function. This integration also took less than five lines of code.
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Without Compute

1 results = [self.score(pipeline , hp) for hp in T]
2
3 for hp, score in results:
4 self.save(pipeline , hp, score , partition_size=int(r_i), save= ←˒

True)

With Compute

1 def score_pipeline_func(hp):
2 return (hp , self.score(copy.copy(pipeline), hp, ←˒

partition_size=int(r_i)))
3
4 args = [{"args": [hp], "kwargs": {}} for hp in T]
5 results = compute_framework.run(args , score_pipeline_func)
6
7 for hp, score in results:
8 self.save(pipeline , hp, score , partition_size=int(r_i), save= ←˒

True)

Figure 6-4: The integration of Compute into the SearchHyperband class requires less
than five lines of code.

6.6 Drawbacks of the Compute Abstraction

As demonstrated in the previous sections, integrating the Compute object to different

aspects of DeepMining requires very few changes. However, unifying multiple frame-

works under the same API, while increasing modularity, runs the risk of reducing

performance and customizability. However, because the computations encountered

in DeepMining are simple and embarrassingly parallel, it seems like most of these

adjustments may be done by modifying the Compute class while maintaining isolation.

For example, platform-specific parameters can likely be configured in the initialization

function. In addition, any performance enhancements can likely be implemented in

the run function.
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Chapter 7

Performance

In this chapter, we run DeepMining on several datasets with different configurations.

As we currently do not have enough pipelines and search algorithms to reliably assess

accuracy, we instead focus on performance. As DeepMining, MLBLocks, and BTB

evolve, there should be enough modules to conduct experiments involving accuracy.

In particular, we run DeepMining on the following datasets and pipelines:

• The traditional image pipeline (which runs histogram of oriented gradients

(HOG), then a random forest classifier), tuned on the MNIST dataset.

• The random forest classifier, tuned on the Wine dataset, a multiclass classification

problem provided by scikit-learn.

• The random forest regressor, tuned on the Boston house-prices dataset, a

regression problem provided by scikit-learn.

We run these experiments on an Ubuntu 14.04 machine with 16 cores and 16

gigabytes of RAM. In summary, we notice that on the provided workloads, Spark

performs poorly, while the Python multiprocessing library offers significant speedups.

We plan to run more conclusive tests as more modules are implemented in DeepMining.
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7.1 Effect on Search

Tables 7.1, 7.2, and 7.3 demonstrate the results when running the BTB search algorithm

on the MNIST, Wine, and Boston datasets. We vary the Compute instance used, along

with the number of evaluations to run in parallel, represented as the num_parallel

argument.

In all three cases, we find that using the Python multiprocessing library offers

almost a 3x speedup when num_parallel is 100. In addition, we find that Spark

performs slightly worse than a pure sequential implementation: this seems to indicate

that Spark has too much overhead, but perhaps running on a larger dataset would

demonstrate a better speedup.

Tables 7.4, 7.5, and 7.6 demonstrate the results when running the MNIST, Wine,

and Boston datasets using the Hyperband search algorithm. Here, we notice similar

results, although Spark performs slightly worse, and using Python multiprocessing

instead brings a 2x speedup. Note that Hyperband does not need a num_parallel

attribute, because it already evaluates configurations in batches.

7.2 Effect on Scoring

Table 7.7 effects of Bag of Little Bootstraps (BLB) by tuning the traditional image

pipeline on the MNIST dataset. Here, we notice that using Python multiprocessing

offers a 2x speedup, while Spark performs approximately 10% worse than sequential.
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Compute Num. Parallel Time (s)

SequentialCompute

10 146.63

20 146.944

50 147.719

100 147.957

PythonMultiProcessingCompute

10 73.592

20 56.7

50 57.197

100 50.737

SparkCompute

10 157.978

20 146.245

50 143.173

100 142.485

Table 7.1: The results for the MNIST dataset and BTB search algorithm.
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Compute Num. Parallel Time (s)

SequentialCompute

10 58.822

20 59.249

50 59.982

100 60.285

PythonMultiProcessingCompute

10 30.553

20 30.578

50 31.19

100 21.787

SparkCompute

10 81.481

20 69.77

50 67.379

100 67.037

Table 7.2: The results for the wine dataset and BTB search algorithm.
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Compute Num. Parallel Time (s)

SequentialCompute

10 74.884

20 74.884

50 74.763

100 75.976

PythonMultiProcessingCompute

10 39.157

20 38.708

50 39.996

100 28.495

SparkCompute

10 76.101

20 63.031

50 59.821

100 58.858

Table 7.3: The results for the Boston dataset and BTB search algorithm.
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Compute Time (s)

SequentialCompute 229.599

PythonMultiProcessingCompute 110.145

SparkCompute 295.111

Table 7.4: The results for the MNIST dataset and Hyperband search algorithm.

Compute Time (s)

SequentialCompute 161.149

PythonMultiProcessingCompute 81.943

SparkCompute 206.817

Table 7.5: The results for the wine dataset and Hyperband search algorithm.

Compute Time (s)

SequentialCompute 270.437

PythonMultiProcessingCompute 137.177

SparkCompute 332.055

Table 7.6: The results for the Boston dataset and Hyperband search algorithm.

BLB? Compute Time (s)

Yes SequentialCompute 593.509

Yes PythonMultiProcessingCompute 301.660

Yes SparkCompute 652.783

No - 136.416

Table 7.7: The results for the MNIST dataset and BTB search algorithm, with and
without Bag of Little Bootstraps.
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Chapter 8

Conclusion and Future Work

Over the course of this year, we achieved the design goals we had in mind: to take

the DeepMining system and divide it into modular, isolated parts that can easily be

extended or modified. For the most part, however, we focused on functions that were

already present in the original iteration of DeepMining. As DeepMining evolves, we

hope to further this goal: to both add new abstractions that aid the automated machine

learning process, and to implement new subclasses of each of these abstractions. In

doing so, we increase the scope and robustness of DeepMining.

In this chapter, we discuss future work that could improve the next iteration of

DeepMining, and speculate on how these features might be implemented.

8.1 Supporting More Forms of AutoML

The machine learning process can be automated on several levels: as discussed in

Chapter 1, these include feature engineering, architecture search, and hyperparameter

search. While the current iteration focuses on the latter, the DeepMining abstraction

could easily allow for other forms of AutoML. We discuss these in the following

subsections.
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8.1.1 Feature Engineering

To reiterate, feature engineering is the process of taking a dataset and generating

salient features from it. The more relevant the features are, the more accurate the

resulting model may be.

Feature engineering could be easily implemented by creating a DataObject class

in DeepMining. In addition to storing X_train, y_train, X_val, and y_val, the

DataObject class could integrate with a module that reads in this data, along with

metadata about the problem, and generates more salient features. For example, Deep

Feature Synthesis [4], created by the Data to AI group, could be integrated with

DeepMining.

8.1.2 Architecture Search

The hardest problem that needs to be solved is finding the pipeline search space.

There are two levels in which this can be done: first, the system can search through a

list of predefined pipelines, and decide which ones are compatible with the dataset

and problem. On a deeper level, because the MLBlocks library provides composable

primitives, the system can use these primitives to automatically construct pipelines

that might be feasible. This problem is much more difficult, because the search space is

exponential. In addition, it requires domain-level expertise to annotate each primitive,

and to decide when two primitives can and should be composed.

Architecture search could be easily integrated into the DeepMineSearch class:

specifically, instead of accepting the search_space variable, which represented the

list of MLPipeline objects to grade over, the __init__ function could instead infer

the search space using the dataset, problem type, and scoring function.

8.2 Implementing More Modules

The abstractions in DeepMining were intended for any developer to contribute new

modules. Another goal is to invite developers to use the platform, and contribute
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new Compute, DeepMineSearch, and ScorePipeline modules. While increasing the

breadth of the DeepMining platform, this also helps test the extensibility and flexibility

of the current abstraction. In addition, it helps receive feedback about the system

design as a a whole. The same holds for MLBlocks and BTB, as contributing to those

modules has a direct benefit on DeepMining.
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Appendix A

API Tables
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__init__(self, *args, **kwargs)

Purpose

Initializes a particular scoring method.

Arguments

The arguments are specific to the parameters of the computation framework. These
might include the number of subsamples, size of each subsample, etc.

Outputs

This function initializes the instance, but does not return anything.

score(self, pipeline, X_train, y_train, X_val, y_val, score_func=None)

Purpose

Evaluate the pipeline on the given train data, validation data, and scoring function.

Arguments

pipeline The MLPipeline object to be evaluated, with hyerparame-
ters already set.

X_train, y_train,
X_val, y_val

The training data, training labels, validation data, and vali-
dation labels, represented as numpy array-like objects.

score_func The scoring function to use, which takes in X and y and
returns a score. If score_func is None, uses a default scoring
function.

Outputs

The run function runs the map_function on the list of arguments. If
reduce_function is None, then return the outputs from the map procedure, Otherwise,
run reduce_function on the outputs and return the result.

Table A.1: The API for the the ScorePipeline class.

76



score(self, pipeline, hyperparams, partition_size=None)

Purpose

Runs a pipeline on a given hyperparameter set, and a particular partition size of the
data.

Arguments

pipeline The MLPipeline object to consider.

hyperparams The hyperparameters to pass into the pipeline, represented
a dictionary from name to value.

output_dir Where to save logs during the search procedure. Defaults to
saved_models/.

partition_size If provided, only evaluates the pipeline on a subsample of
the data. This is passed into the ScorePipeline object.

Outputs

Returns the score as a float, as evaluated by the scorer.

save(self, pipeline, hyperparams, score, partition_size=None, save=False)

Purpose

To save information about a particular trial. We give developers control over when
they do this, in case they don’t want to store information about every single candidate.

Arguments

Same as the score function, except users also provide the score for that trial.

Outputs

This function pickles the MLPipeline object, saves it in output_dir, and adds infor-
mation to the history of trials.

Table A.2: The API for the developer-facing methods in DeepMineSearch.
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__init__(self, *args, **kwargs)

Purpose

Initialize a particular search algorithm.

Arguments

scorer The scoring method, represented a subclass of
ScorePipeline. For example, this might refer to
Bag of Little Bootstraps (ScoreBLB) or cross-validation
(ScoreCV).

X_train, y_train,
X_val, y_val

The training data, training labels, validation data, and vali-
dation labels, represented as numpy array-like objects.

score_func The scoring function to use, which takes in X and y and
returns a score. If score_func is None, uses a default scoring
function.

search_space The list of pipelines to tune, represented as a list of
MLPipeline objects.

output_dir Where to save logs during the search procedure. Defaults to
saved_models/.

Outputs

This function initializes the search instance, but does not return anything.

search(self, *args, **kwargs)

Purpose

Initialize a particular search algorithm.

Arguments

This depends on the scoring algorithm. For example, a user might specify the number
of candidates to consider, the number of candidates to run in parallel, which tuner or
selector to use (if using BTB), etc.

Outputs

The search function does not return anything, but it stores the best pipeline in
the best_pipeline attribute. In addition, information about previous candidates is
stored in output_dir.

Table A.3: The API for the user-facing methods in DeepMineSearch.
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__init__(self, *args, **kwargs)

Purpose

Initialize a particular computation framework.

Arguments

The arguments are specific to the parameters of the computation framework. These
might include the number of threads, location of the cluster, etc.

Outputs

This function initializes the instance, but does not return anything.

run(self, arguments, map_function, reduce_function=None)

Purpose

Initialize a particular search algorithm.

Arguments

arguments A list of arguments in the form [{’args’: *args,
’kwargs’: **kwargs}].

map_function Any function that takes takes *args and *kwargs as input,
and returns a value.

reduce_function Optionally, a function that takes in two values, and returns
a result. Generally, this function should be associative.

Outputs

The run function runs the map_function on the list of arguments. If
reduce_function is None, then return the outputs from the map procedure, Otherwise,
run reduce_function on the outputs and return the result.

Table A.4: The API for the Compute class.
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