978-1-5090-5004-8/17 $31.00 © 2017 IEEE
DOI 10.1109/DSAA.2017.82

2017 International Conference on Data Science and Advanced Analytics

Sample, Estimate, Tune: Scaling Bayesian
Auto-tuning of Data Science Pipelines

Sebastien Dubois
MIT, LIDS Stanford University
Cambridge, MA Palo Alto, CA
alecand@mit .edusdubois@alumni.stanford.edu

Alec Anderson

Abstract—In this paper, we describe a system for sequential
hyperparameter optimization that scales to work with complex
pipelines and large datasets. Currently, the state-of-the-art in
hyperparameter optimization improves on randomized and grid
search by using sequential Bayesian optimization to explore
the space of hyperparameters in a more informed way. These
methods, however, are not scalable, as the entire data science
pipeline still must be evaluated on all the data. By designing a
sub sampling based approach to estimate pipeline performance,
along with a distributed evaluation system, we provide a scalable
solution, which we illustrate using complex image and text data
pipelines. For three pipelines, we show that we are able to
gain similar performance improvements, but by computing on
substantially less data.

[. INTRODUCTION

When given a problem and data, a data scientist puts
together an end-to-end pipeline that performs a series of
transformations on the data and then learns a model. Over the
course of this process, the data scientist makes a number of
decisions regarding the hyperparameters associated with each
of the transformation blocks. These decisions are made at the
pre-processing, feature extraction, feature transformation and
modeling stages.

According to our observations, data scientists use three
strategies to make decisions about hyperparameters: (1) they
use past experiences and domain knowledge, (2) they choose
in an ad-hoc manner (usually setting them to default values),
assuming that they can regain any lost accuracy by fine-
tuning the later stages of the pipeline (essentially the machine
learning model), or (3) they choose quickly in pursuit of an
end-to-end solution that will enable them to assess whether
the data will solve the problem at hand, intending to revisit
this initial choice later. When multiple members are involved
in the process, a number of intermediate representations of
data are stored and shared in order to enable team members
to simultaneously work on different parts of the pipeline. This
makes it harder to revisit the choices made at earlier stages.

These strategies ultimately result in sub-optimal solutions,
as decisions made at the earlier stages of the pipeline can
have a huge impact on performance. Because dependencies
between the hyperparameters chosen and the pipeline’s overall
performance can be hard to understand, data scientists often
do not build the most effective possible pipeline. Then, when

Alfredo Cuesta-Infante
Universidad Ray Juan Carlos MIT, LIDS
Madrid, Spain Cambridge, MA
alfredo.cuesta@urjc.es kalyan@csail.mit.edu

Kalyan Veeramachaneni

the resulting end-to-end solution does not perform well, it is
unclear which part of the pipeline needs to be tuned or refined.

In this paper, our goal is to develop an auto-tuning system
that enables data scientists to efficiently explore numerous
possibilities for hyperparameters, and then confidently make a
choice, backed with tests and metrics based on the execution
of the pipeline. With regards to efficiently searching the space,
we are encouraged by the progress made by the Bayesian
hyperparameter optimization community [1]-[3] [4]. These
methods provide a way of modeling the search space from a
few samples, and sequentially attempting to find better points
given a metric of choice, as computed by a “scoring function.”
Their goal is to reduce the number of “scoring function”
evaluations.

However, when optimizing an entire data science pipeline,
the scoring function depends on the execution of a complex set
of data transformations that make up the earlier stages of the
pipeline. Hence, even a single execution can require substantial
computing power. Our aim with this paper is to address the
challenge of computing the scoring function for an arbitrary
data science pipeline. We utilize Bayesian hyperparameter
optimization, but address the data and computing requirements
by estimating the score using a subsampling method based
on Bag of Little Bootstraps (BLB). This method can be
executed in an extremely parallel fashion, as the pipeline
can be simultaneously executed on different subsamples. We
develop an Apache Spark-based implementation for using Bag
of Little Bootstraps. We demonstrate that even after sampling
down the data, a user can estimate the scoring function of
the pipeline with reasonable accuracy, and use it to direct the
search.

The rest of the paper is organized as follows. Section II
presents the overview of our system. We describe how users
can construct arbitrary pipelines in our system in Section III. In
Section IV, we present the Bag of Little Bootstraps technique.
Section V presents our copula-based Bayesian hyperparameter
optimization process. We present multiple pipelines that we
designed, as well as results, in Section VI.

II. OVERVIEW

Consider a function g(h), where the function’s output is a
measure of how well a data science pipeline is performing,
as measured by a user-specified scoring function. The data

361

science pipeline has certain hyperparameters, h. ' The goal
of hyperparameter optimization is to find the settings of the
vector h that maximize (or minimize) the scoring function
g(h). Subject to a specified range R for h:

argmin g(h)
h e))
subject to h e R

In our system, a data scientist who wishes to tune a pipeline
can do so by executing the following steps:

— define an arbitrary pipeline in our abstraction, exposing
all hyperparameters, and selecting what parts of the
pipeline s/he wants to tune (described in Section III),

— write an evaluation function for the pipeline,

— specify the settings for Bag of Little Bootstraps, the
tuning algorithm and the cluster size. These settings are
detailed in section IV, and section V.

— launch a cluster using our API, and

— run the DeepMine function specifying the pipeline,
the cluster location, and other required configs.

The system then:

— uses our novel open-source implementation of Bayesian
hyperparameter optimization with Gaussian Copula Pro-
cesses to propose hyperparameters for the pipeline,

— evaluates the pipeline using subsampling, and

— responds iteratively, each time proposing a new set of hy-
perparameters for the pipeline and ultimately giving
the best possible pipeline as output.

III. COMPOSING ARBITRARY PIPELINES

Our goal in this paper is to enable tuning of the entire
pipeline, which includes a series of data transformations
that can be sorted into three types: preprocessing, feature
extraction, and feature transformation. This process presents
several challenges:

« Too many possibilities: When considering data science
pipelines, numerous possibilities exist for early-stage data
transformations. Transformations can be specific to a
domain or a problem, and/or specifically developed to
mitigate issues in data collection. This variety makes it
impossible to develop a system around a fixed set of
transformations a priori. These steps also accept a variety
of inputs, such as data in non-matrix formats, that many
existing tools cannot incorporate.

« Unstructured processes: Unlike software libraries for
machine learning algorithms, software for these trans-
formations is written by domain experts, who do not
generally write it in a structured and uniform way. This
lack of structure and uniformity inhibits development of
a general purpose system like ours.

In order to address these two issues, we resort to familiar
abstractions developed for machine learning methods, and

'Hyperparameters are distinct from the parameters learned during the
model training process.

evaluate whether they might be extended for pipelines in
general.
Abstractions in scikit-learn Scikit-learn, a widely adopted
machine learning software library, offers a powerful fit-
transform abstraction. It has two types of objects: transformers
and estimators. As their name suggests, transformers transform
the data, and they must have fir and transform methods
(the fit method allows them to learn parameters to be used
for transform). Principal Component Analysis (PCA) is an
example of a transformer. The fit method in PCA identifies the
principal vectors in the data, which are then used to transform
the feature matrix. Estimators fit a model and use a fitted
model to predict, and hence must have fir and predict methods.
Any machine learning classifier is an example of an estimator.
This has provided a uniform way to specify disparate methods
in machine learning.

Scikit—-learn also extends these methods to pipelines
composed of multiple steps chained together. Within scikit-
learn, a user can do the following:

o Create arbitrary pipelines: A user can chain together
multiple transformers, provided they always end with an
estimator method. Consider an example in which a user
has a pipeline consisting of steps A, B, and C, where
A and B are scikit-learn transformers, and C is a
scikit-learn estimator. First, the pipeline object is
constructed by specifying a list of the variables for the
pipeline steps. These variables denote objects on which
the fit and transform methods can be called.

pipeline = Pipeline([A, B,C])

Next, the pipeline hyperparameters are mapped to indi-
vidual steps by following a strict convention:

pipeline.set_params = {A__al: vq1, B__bl: vy,
C_cl: v}

where al is a hyperparameter for step A and v,; is the

corresponding name specified for the same step in the

global dictionary of hyperparameters.

Integrated training and validation: One of the ad-

vantages of setting up the pipeline object and mapping

the hyperparameters as shown above is that users can

now call the same "fit” and “predict” functions that they

would have used on individual steps to execute the entire

pipeline.

— Calling

pipeline.fit (X_tr, y_tr)
will transform the data sequentially in the order the
steps are specified in the pipeline leading up to
the estimator. It will apply fit_transform for
each transformer, and finally “fit” the estimator on
the resulting transformed data.

— The fitted pipeline can then be evaluated on the
validation data, and used to make predictions as fol-
lows:

score = pipeline.score (X_v, y_v)

predictions = pipeline.predict (X_v)

362

In both cases above, X, is transformed with the
pipeline’s intermediate steps, this time using only the
transform method, and scored using the fitted esti-
mator.
Integrating custom functions: One potential problem with
the pipeline abstraction is its strict structure, as users will have
to alter their program to implement fit and transform. How-
ever, scikit-learn provides the FunctionTransformer,
TransformerMixin, and BaseEstimator classes to
streamline this conversion process.

FunctionTransformer objects take an arbitrary trans-
forming function as an input and output a valid scikit-learn
transformer, which implements the fit and transform methods
necessary for the pipeline object.

For transformers that also include a fitting process, the
TransformerMixin class can be inherited, and fit and
transform methods can be implemented as desired.

The BaseEstimator class allows for the construction of

arbitrary estimators, requiring users to implement the fit and
score methods.
Advantages of this abstraction: This abstraction greatly sim-
plifies the data science pipeline construction process, requiring
only the implementation of the set_pipeline function. This
construction has many benefits for data scientists, including

« standardizing the pipeline construction process, giving
an intuitive template and adding discipline to the often
unstructured process of pipeline construction,

« making pipelines modular, allowing steps to be inter-
changed arbitrarily as long as each step provides a valid
output for the following step,

o accelerating training and testing by encapsulating the
process into only two function calls,

« providing a framework flexible enough to handle arbitrary
transformers and estimators, and

« enabling code-sharing through the use of a simple, mod-
ular template.

At the beginning of this project, we considered developing
our own set of abstractions, but recognized that existing
ones provided most of the functionality the system needed.
There are, however, some intricacies involved in mapping
the hyperparameter dictionary to each step (for example,
underscores may be used in different places), in changing the
mapping process when a non-scikit-learn function is involved,
and in how an external transformer can be integrated when it
needs both fit and transform functions. In our framework, we
have started to develop a higher-level API that enables easier
integration of domain experts’ code into the framework.
Conditional Pipeline Evaluation A potential method for
achieving large-scale speed improvements is to conditionally
evaluate pipeline steps according to which steps’ hyperparame-
ters have changed. For example, consider a three-step pipeline
with transform steps A and B followed by estimator C, in
which each step has one hyperparameter. If only C’s hyperpa-
rameter changes between two hyperparameter set evaluations,
then we do not need to recompute steps A and B. A possible

system would then store the outputs of the intermediate steps
for the hyperparameter set from previous iteration and use
those precomputed outputs whenever another hyperparameter
set overlaps with previously computed steps.

Additionally, users can specify steps of the pipeline whose
hyperparameters they do not want to tune. In the A — B — C
example above, if they do not want to tune the hyperparameters
of step A, then we simply precompute the output of the
transform A. Using the pipeline abstraction from above, we
define an auxiliary function precompute_trans forms, which
constructs a pipeline of only transforms, calculated before
hyperparameter optimization.

Algorithm 1: General pipeline construction

1 set_pipeline
(X _tryy_tr, X_v,y_v,hyperparam_dict);
Input : Data provided in a train-validation split
(X_tr,y_tr, X_v,y_v) and a dictionary of
hyperparameters to evaluate
Qutput: pipeline object
2 step; = Transformer;()
3 ..
4 step, = Estimator()
5 pipeline = Pipeline([step;,stepo,....step,])
6 pipeline.hyperparams =

{stepi_hyperparam;: hyperparam_dict [pnamel], VN
step;_hyperparamg: hyperparam_dict [pnamek}, VN

step,_hyperparam,: hyperparam_dict [pnamen]}
7 return pipeline

IV. SAMPLING BASED ESTIMATION

One of the main roadblocks getting in the way of tuning of
an entire data processing pipeline is the computational time
such tuning incurs, and the amount of data that would need
to be maintained in memory during a single iteration of the
tuning run. This part of the pipeline scales with the raw data.
For image problems, it is now common to deal with several
thousands of images, representing hundreds of gigabytes of
memory, each of which must be processed to extract features
like SIFT descriptors [5].

In our system, we propose using the Bag of Little Bootstraps
(BLB), a subsampling method that allows for the evaluation
of an arbitrary statistic of the data over multiple subsamples.
Thus BLB can potentially allow for the evaluation of the
scoring function on the pipeline in significantly reduced time.
By executing the computation in this algorithm in parallel
using Apache Spark, the theoretical speed gains become even
greater, significantly lessening the computation time involved
in hyperparameter optimization and making it possible to
automatically tune complex pipelines on large datasets.

A. Bag of Little Bootstraps

The Bag of Little Bootstraps, proposed in [6], enables
the calculation of statistics for data with the same statistical

363

guarantees as the traditional bootstrap, allowing for scalable
assessments of the quality of estimators. Bootstrap-based
quantities are typically computed by repeatedly applying a
given estimator to resamples of the original dataset. Because
the sizes of these resamples are of the same order as the
original data (typically around 63% of the data points), the
bootstrap cannot be applied to large datasets in practice.
The BLB method alleviates this problem by introducing an
additional level of subsampling, constructing “bags” within
which bootstraps are created.

Consider a dataset with n elements. In the BLB algorithm,
the data is first subsampled into a “bag” of size b € [n'/2 n] by
sampling the original data without replacement. Within each
of these bags, a bootstrap sample of size n is created using
sampling with replacement.

Then, the estimator in question is computed on this boot-
strap sample of the data within each of the bags. For each
bag, the value of the estimator is the average of the values
on each of the bootstrap samples. Then, the overall estimator
value given by the algorithm is the average of the estimator
values generated for each bag.

Algorithm 2: Bag of Little Bootstraps
Input : Data: n (m-dimensional) data points
Xi.n= {‘r%m s x?.“m};
b: Bag size; s Number of bags;
r: Number of Multinomial samples in each bag
E: Estimator in question; y: statistic of interest.
Output: Estimate of y
1: for 7 — 1 to s do
2: Randomly sample b data points without replacement
forming a bag
X{...b ~ random(Xi.)
for k — 1 to r do
Sample the counts (nq,...,np) ~
Multinomial(n,ly/b)

Estimate i on the bootstrap sample using X{.“b

and the counts as weights
?;k = E(X{b, nl,...,nb)
5: end for
g; = r~1 Y, estimatey,
6: end for

return § = s >0 4

The computational benefit of this algorithm is only realized
because each bootstrap sample consists of only b distinct
points. Since b << n, instead of creating repeated versions
of data points, a multinomial sample of counts is generated
ny...Np, S.t. Zle n; = n. These counts represent how many
times a particular data point in the “bag” would be repeated,
if we were to sample with replacement from the data points
in the bag.

First, this implies that we are essentially operating on b
data points. Second, many estimators can work directly with
a weighted data representation. That is they can estimate the

statistic by taking the b unique data points and the counts
ny ...np associated with each data point. This is presented in
algorithm 2.

The computational complexity of the estimator, then, scales
with b rather than n for both time and disk space used.
The benefits from this reduction in data are substantial, as
for an original dataset with n = 500,000 data points and
a conventional bag size of b = n0%, estimators can be
computed by operating on only 2,627 data points each. While
we will not go into the derivation of the theoretical guarantees
here, the statistical properties of asymptotic consistency and
higher-order correctness are identical to those of the bootstrap,
allowing for the computation of a variety of functions. The
BLB method is also quite amenable to parallelization, as each
bag can be computed in parallel with no modification to the
original algorithm.

B. Application to data science pipelines

Our system uses an algorithm based on the Bag of Little
Bootstraps to construct samples for training and validating
data science pipelines. We incorporate cross-validation in BLB
using a train-validation split approach based on that proposed
in [7]. In this approach, training and validation bags are both
constructed: For the parameter s in the original BLB, 2 - s
bags are created. Then, bootstraps are taken as before within
the training bag, and the pipeline in question is trained on each
of these weighted, size b bootstraps. The weights drawn from
the Multinomial distribution bias the training of the pipeline.
These trained models are then scored on the validation bag,
and the scores from the validation bag are averaged to compute
a final estimate for the training bag. This is repeated for every
training bag and scores are averaged across all training bags.
The detailed process can be found in Algorithm 3.

As mentioned before, the computational benefits are

achieved because transformers and estimators in the pipelines
can work with weighted data representations. For custom
transformers, we require users to develop a version that can
accept weighted data points.
Complexity analysis: Using this BLB train/validation split
provides considerable asymptotic computational benefits, as
machine learning algorithms now scale with b rather than
n. For example, Support Vector Machine methods now have
asymptotic complexity O(b?) rather than O(n?), a consid-
erable improvement when b € [n%® n]. This complexity is
achieved by using machine learning algorithms that can use
the data given as weighted samples, and implementations with
this capability can be easily found in open-source libraries like
scikit-learn.

BLB settings is a major consideration in this algorithm, as
changing the number of bags s and the number of bootstraps
in each bag r can dramatically change the running time. In
Algorithm 3, we train the estimator s - r times, and test it
s-r times. If the original algorithm has time complexity O(n)
for training or testing on n data points, the rough complexity
of this process is 2 - s -7 - b for bags of size b. We make

364

Algorithm 3: Bag of Little Bootstraps for Data Science
Pipelines
Input

: Data: n (m-dimensional) data points
b: Bag size; s Number of bags;
r: Number of Multinomial samples in each bag
pipeline: pipeline in question; y: statistic of
interest.
Output: Estimate of y, ¢
1: for j — 1 to s do
2: Randomly sample b data points without replacement
to form a training bag
Xf(f%] ~ random(X7.)
3: Randomly sample b data points without replacement
to form a validation bag
Xf(vg ~ random(Xi. n)
4: for k — 1tordo
5 Sample (n1,...,np) ~ Mult inomia‘l(n,lb/b)
6: pipeline = pipeline. fit(X{_(fg), N 5eeesNp)
7 Jr = pipeline.score(X{_(f)g)
8: end for
g =17 e O
9: end for

return § = s~ Y0,

these hyperparameter considerations empirically, as shown in
section VL.

C. Implementation

The BLB algorithm for machine learning is quite paralleliz-
able, as bags can be computed upon in parallel. Deep Mining
uses Apache Spark on EC2 clusters, as well as the pathos
multiprocessing method, to parallelize this computation. We
will not go into the the details of our use of Apache Spark,
but in essence, we use a map-reduce structure in which we
compute estimator scores for a given bootstrap and bag, then
aggregate these scores by averaging across all bootstraps and
bags.

To run the BLB algorithm in Deep Mining, the user need
specify only the value of the BLB settings: the size of the bags
b, the number of sampled bags s, and the number of bootstraps
r. In section VI, we have found b = n%6, s = 8, and r = 20
to be sufficient for our data science pipelines.

D. Extensions

The map-reduce implementation of the BLB algorithm in
our system also allows for different reduction functions, giving
users the flexibility to calculate other statistical quantities
relating to the estimator scores in question. For example, con-
fidence intervals and estimator variances can be constructed
by using the empirical multinomial sample scores [8].

In any distributed computation system, application-specific
tuning can significantly increase computational performance.

Fine-tuning of Apache Spark applications by altering con-
figuration values, incorporating file systems such as HDFS,
and altering the level of parallelism can significantly speed
hyperparameter optimization in the future. Just-in-time com-
pilers such as SEJITS [9], [10] can also speed computation by
porting high-level Python to lower-level languages such as C,
and these systems could be applicable to Deep Mining.

V. HYPERPARAMETER TUNING

In machine learning, the Gaussian Process is a particular
prior to perform Bayesian learning. Specifically, if the goal is
to predict the values of a function g : H —)Y C R, this means
that we model g such that for any finite set of N points {h;}Y,
in H, {g(h;)}}Y; has a multivariate Gaussian distribution on

RY, determined by the mean function m : H —) and the
covariance function k : H x H — R :
m(h) = E[g(h)] 2)

k(h, h') = E[(g(h) — m(h))(g(h") — m("))].

Note that these functions depend only on g(h).

Usually, the mean function is fixed as the average of the
known g values on the training data, so we will take it to be
zero (assuming the data are centered). The covariance function
is parametrized, and its parameters are learned using data via
Maximum Likelihood Estimation [11].

In the Bayesian framework, predictions are simply made
by looking at the posterior distribution, which is the prior
conditioned on the training data (Et, gt). Thus the predicted
value g, of the function g at point h, would be:

3

9+ =E(g(h.) | he, ge), @
where :
g(h*) ~ N(k(h*’ Bt)K;lgtv
E(hu, hi) — k(ha, he) K k(g By)). (5)

and K; = k(hy,) is the square covariance matrix of the
training data.

A. Gaussian Copula Process (GCP)

The Gaussian Copula Process, as introduced in [12], is
a prior based on a GP that can more precisely model the
multivariate distribution of {g(h;)}X,. This is done through
a mapping ¥ :) — Z that transforms the output of g into a
new variable z. We define a new function w, w : H — Z, a
combination of g and ¥ given by w(h) = ¥(g(h)); and we
model w with a GP.

By doing this, we actually change the assumed Gaussian
marginal distribution of each g(h) into a more complex one.
More specifically, the Gaussian prior on w(h) yields the
prior for g(h) given by the following cumulative distribution
function:

Fy) = 2(¥(y)), (6)

where F'(y) =P(g(h) <y) and ® is the standard univariate
Gaussian cumulative distribution function. From this point on,

365

we will use y for g(h) and z for w(h) and z = ¥(y), for
notational convenience.

So far in the literature, e.g. [12], [13], a parametric mapping
is learned so that z is best modeled by a Gaussian Process. In
[12], the authors propose to parametrize ¥~ by {a;,b;,c;}
such that:

K

y=9""(z{a5,b5,¢150) = D ajlog (e F) 4 1),
j=1
(N

with aj,b; > 0. They are interested in predicting the values
of a positive function g. So in the general case, we can add
another variable m:

K
y =9z {a, by 1S m) = Y aglog () +1) —m

j=1

where m, a;,b; > 0. Thus for K =1 we have :
y+m

P = U(y) = log(e ;; -1

However, we have found that such a mapping was unstable:
for many trials on the same dataset, different mappings were
learned. Moreover, the induced univariate distribution for y
was almost Gaussian most of the time, and the parametric
mapping could not offer great flexibility. We indeed see in e.q.
(7) that for K = 1, if bz > bc, 1, then ¥~(z;a,b,c)~abz,
ie. the mapping is linear and the GCP is actually a GP.

Thus we introduce a novel approach where a marginal distri-
bution is learned from the observed data through kernel density
estimation [14] of F'. Then the mapping ¥ is numerically
computed from equation (6), so that the observations of the
training data w(h,,;) have a Gaussian distribution:

2 =U(y) =2 1 (Fu(y)). ©)

As the mapping function is learned in a non-parametric

manner, we call this novel approach Non-Parametric Gaussian
Copula Process (nGCP).
Non-Parametric Latent GCP (nLGCP): As stated above,
the prior mean of a Gaussian process is usually fixed as the
empirical mean of the observations y; ;. In the context of
hyperparameter optimization, however, we can easily feel that
there should be some region where the hyperparameters would
be rather good, and others where they would be rather bad.
Thus it appears that it may be convenient to set a different
mean for the prior depending on the region in which the
hyperparameter is found. Regarding the GP, it could be argued
that this would not have much impact, as the covariance
function is meant to induce such smoothness. However with
GCP we fix not only the mean function, but the mapping
function as well. We recall that the mapping function reflects
the distribution of the data. Thus with nGCP, a latent model
aims to learn several distributions of y over the input space.
In particular, we think this could have a positive influence
when trying to locate good regions to explore in a Bayesian
optimization process.

—c m,a,b>0. ®)

Thus, we introduce a non-parametric Latent Gaussian Cop-
ula Process prior (nLGCP), where the mapping function also
depends on the input h. Intuitively, the goal is to include in
the prior not only the distribution D of y on the entire space
H but the distributions Dy, ..., Dy of y on k regions of H.
This way, we design a prior that really depends on h (whereas
in the previous equations, » was only an index to denote the
random variable y).

To design the nLGCP prior, we look for a mapping function
that depends on the input h and output y.

To this end, the training data {(h;,y;)} are clustered in
HxY C R™*H! using K-means. For each cluster Cy,, a mapping
W, is learned as described in the previous section. Then for
each h in H, the final mapping ¥ is computed as:

U(h,y) = ar(h).Ux(y),

where: ay(h) = exp(st(g—’;)g) and dj, = disty(h,Cy)
and o}, = stdy(Cy). s is a smoothing coefficient, and ¢, is
the projected center of the cluster Cj, on H.

Predictions with nLGCP: Predictions with GP are straight-
forward given the equations (4,5) but this is no longer the case
with nLGCP. A faster but more approximate way to compute
the predicted value of y,. for a given h, is to calculate z,,
which is the standard GP prediction of the warped output
U(y,) given by the posterior: z, ~ N (px, 0x), Where piy, o
correspond to the detailed expressions of equation (5). Noting
from the equation (6) that the predicted cumulative distribution
function of y, is F, = ®(V;p.,0.), we can evaluate the
prediction as:

10)

Yn :/ w- W (u) - p(W(u); ps, 04) - du (11)
where ¢,,, », denotes the probability density function of a
univariate Gaussian N (g, 0y).
The particular expression of W in e.q. (9) for the nGCP prior
finally enables us to express its derivative directly:
dest(y)

naop(y) = (W)’ (12)

where ¢ and d.,; are the probability density function of the
standard univariate Gaussian and the one corresponding to
Fis: defined in section V-A, respectively. Similarly, we can
calculate the derivatives for ¥,,;.ccp.

Tuning the algorithm: The tuning algorithm executes as
follows:

— Step 1: It receives the hyperparameter set and their
estimated scores from the BLB.

— Step 2: It fits an nLGCP model to this data.

— Step 3: To choose the next hyperparameter set, a grid
of candidates is built from the space of hyperparameters.
The model is used to predict mean and variance for the
score for every point in the hyperparameter space.

o Step 4: An acquisition function based on Expected Im-
provement or an Upper Confidence Bound [1] is used to
select the next hyperparameter set.

366

o Step 5: Then, the BLB estimator is evaluated on that
hyperparameter set, and the process continues for the
specified number of iterations.

VI. EXPERIMENTS

In our Deep Mining experimentation, we aimed to answer
the following question: Does Bayesian hyperparameter op-
timization using BLB effectively search the hyperparameter
space? If this optimization is effective, then the asymptotic
complexity of hyperparameter optimization will be dramati-
cally improved, giving a theoretical result that can accelerate
the tuning of data science pipelines. If optimization with
estimator scores using BLB on the pipeline is effective, then
we will see improvement in the pipeline performance roughly
comparable to the non-BLB approach, where we calculate the
pipeline scores using all of the data.

A. Datasets

For this question, we experimented with data science
pipelines on image and text datasets:

1) Handwritten digits: We first considered the famous
handwritten digits recognition problem from the MNIST
dataset. In this dataset, the training images are handwritten
digits from O to 9, and the task of the classifier is to predict
the digit label that goes with each greyscale image.

2) Sentiment analysis: : The second problem we con-
sidered is based on the plain text of movie reviews from
IMDB, with the goal of predicting whether a review is
positive (if it received a rating greater than or equal to
5) or negative (if it received a rating lower than 5). The
dataset used is from Kaggle’s Sentiment Analysis competi-
tion https://www.kaggle.com/c/word2vec-nlp-tutorial/dataBag
of Words Meets Bags of Popcorn.

B. Pipelines

We used three pipelines in our experiments. For the image
dataset, we used a convolutional neural network pipeline as
well as a more traditional pipeline, with the conventional
HOG feature extraction methods. For the text dataset, we used
a traditional pipeline, with feature extraction and processing
methods conventional for the data type.

Traditional Image Pipeline: For images, we first considered
a pipeline using the scikit-image [15] implementation of
Histogram of Oriented Gradients (HOG) and scikit-learn’s
Random Forest classifier.

Convolutional Neural Network Image Pipeline: For images,
we also considered a convolutional neural network (CNN),
as CNNs have demonstrated state-of-the-art results on image
datasets, and tuning of their architecture hyperparameters can
significantly affect their performance.

Traditional Text Pipeline: For the sentiment analysis prob-
lem, we first considered a conventional pipeline using bag of
n-grams transformations and a Naive Bayes classifier.

C. Methodology

The following description includes three new terms that
we will define here. An iteration is an evaluation of
a single hyperparameter set — in other words, one single
training and validation of the specified data science pipeline. A
trial involves multiple iterations constituting a single
run of the SmartSearch algorithm, resulting in the best possible
pipeline at the end of the specified iterations. An experiment,
then, consists of multiple trials on a single pipeline for a single
dataset.

For each pipeline, we run one experiment using BLB and

another in which we operate on the whole dataset. Each
experiment consists of ten trials of SmartSearch with 30
iterations in each trial (non-BLB). Each SmartSearch trial
consists of the evaluation of 30 hyperparameter sets, with
the first 3 hyperparameter sets chosen at random, the next 24
hyperparameter sets chosen by the nLGCP algorithm with the
Upper Confidence Bound acquisition function, and the final
3 sets chosen simply by the highest predicted score. We run
three experiments in this case: the HOG image pipeline, the
CNN image pipeline, and the traditional text pipeline. The
BLB hyperparameters used in these experiments were bag size
b = n%%, number of bags s = 8, and number of multinomial
samples r = 20.
Computation used:For the BLB experiments, we used an
Apache Spark cluster consisting of four m4.4xlarge machines,
each of which have 16 vCPUs and 64 GiB of memory. For
the non-BLB experiments, we used an m4.16xlarge machine,
which has 64 vCPUs and 256 GiB memory.

D. Evaluation

The train/validation split varies for the BLB and non-BLB
pipeline processes and by dataset.

1) MNIST Dataset: In the MNIST dataset, we have 42,000
data points, which we split into a training dataset of 36,000
data points and associated labels, as well as a validation set of
6,000 data points and associated labels. The non-BLB process
is run by training on the 36,000 data points and validating on
the 6,000 data points for each hyperparameter set, outputting
to SmartSearch the score on the 6,000 data points from the
validation set.

During the BLB process, we use the 36,000 data points
for training and validation. For final comparison in the below
analysis, we calculate the score on the remaining 6,000 data
points by training the estimator with the chosen hyperparam-
eters on the 36,000 training points, and outputting the score
of that trained estimator on the remaining 6,000 data points.

2) Text Dataset: In the dataset from Kaggle’s competition,
we have 25,000 text reviews and their associated labels, and
we choose a training/validation split similar to that used on the
MNIST dataset. We split our dataset into a training dataset of
20,000 data points and associated labels as well as a validation
set of 5,000 data points and associated labels. The non-BLB
and BLB processes are then the same as for the MNIST dataset
with these training and validation datasets.

Our comparison framework has the following properties:

367

TABLE I
TYPES OF PIPELINES.

Pipeline type Description

Hyperparameters

Extract a Histogram of Oriented Gradients
(HOG) for each image

Traditional Image Pipeline

e Number of orientation bins: [7,9]
o Size (in pixels) of a cell: [3,6]
e Number of cells in each block: [3,6]

Classify with a Random Forest Classifier

Number of trees in the random forest: [2,10]

Convolutional Neural Two-dimensional convolutional layer

Width (and height) of the square convolutional kernel: [3,5]

Network Image Pipeline Two-dimensional max-pooling layer

Width (and height) of the square pool: [2,5]

Dropout layer

Dropout percentage: [0.0,0.75]

Densely connected layer with softmax
activation

Traditional Text Pipeline Transform the reviews in Bags of n-grams

e Maximum number of features to keep ny € [1000;400000].

o Consider only the terms with a document frequency between df,,;,, and
dfrnaz, where dmen € [07 O.3],df7naz S [04, 1]

o Consider n-grams terms for n between 1 and npgram,maz, Where
Nngram,maz € [1;4]'

Transform the n-grams count vectors in tf-idf
vectors

e Norm L1
e Norm L2

Classify with a multinomial Naive Bayes
classifier

Classification: we use a Lidstone smoothing parameter « € [0.01; 1]

o Comparison between two hyperparameter sets, one from
BLB and one from non-BLB is fair. Even though in BLB
version the score is estimated using the sampled version
of the datasets, the estimate for comparison is generated
by training the pipeline (with the specified hyperparamter
set) one last time on all of the training data and testing
on the validating data, which is consistent with how non-
BLB estimates are produced.

e« We gave an unfair advantage to non-BLB by feeding
its score on the validation set to its hyperparameter
optimizer. This is not the case for the BLB case. Thus
the hyperoptimizer in the non-BLB method is optimizing
accuracy over the validation set.

E. Results

In our results, our goal is to see if BLB based method in con-
junction with hyperparameter tuning can improve the pipeline
performance as iterations progress. Are these improvement
comparable to non-BLB based method? In our experimental
results, we find that sampling-based hyperparameter optimiza-
tion using BLB leads to performance improvements compara-
ble with those obtained by evaluating on the entire pipeline.

In order to see this result, we can first plot the improvement
over the course of the SmartSearch process for each pipeline,
averaged over the ten experiments. In Figures 1, 2, and 3, the
horizontal axis corresponds to the iteration number and the
vertical axis corresponds to the best estimator performance
before and including a given iteration (on the validation set).

The performances of BLB and non-BLB estimator evalua-
tion are comparable for all of these pipelines, with the BLB
iterations demonstrating similar performance improvements.
In the HOG image pipeline, the BLB evaluations actually

0.960

o

[{e]

~

o
|

BLB/non-BLB Mean

0.880

T T
0 5 10 15 20 25 30
lteration number

—e— BLB Mean —& non-BLB Mean

Fig. 1. Experimental averages for the HOG image pipeline.

slightly outperform the non-BLB evaluations, likely as a result
of the higher average starting accuracy. In the CNN image
pipeline, the BLB evaluations show the least improvement of
the three pipelines relative to the non-BLB evaluation. This
underperformance is likely due to neural networks’ reliance
on large datasets, as training and validating a CNN on only
[360000%-6] = 542 data points is expected to lead to poor per-
formances. The performance increases for the BLB evaluation
traditional text pipeline are quite near those of the non-BLB
evaluation, and the lower average starting performance can be
attributed to the small amount of experimental data.

We can also evaluate the improvement more quantitatively,
examining the average improvement and standard deviation of
that improvement for both the BLB and non-BLB processes in

368

0.970 +

0.965

0.960

BLB/non-BLB Mean

0.955

T T
5 10 15 20 25
lteration number

o

—o— BLB Mean —& non-BLB Mean

Fig. 2. Experimental averages for the CNN Image pipeline.

0.850

0.800

0.750

BLB/non-BLB Mean

T T
5 10 15 20 25 30
Iteration number

o

—e— BLB Mean —& non-BLB Mean

Fig. 3. Experimental averages for the traditional text pipeline.

Table II. As we can see, the mean performance improvements
are comparable for the pipelines, with the CNN image
pipeline leading to lower improvements for the reasons
detailed below.

F. Discussion

When evaluating the hyperparameter sets chosen by the
BLB and non-BLB SmartSearch experiments, we can see
through manual inspection that their results follow intuition.

TABLE II
BLB AND NON-BLB PROCESSES STATISTIC. STD. DEV. = STANDARD
DEVIATION.
BLB Non-BLB
Mean Std. Dev. Mean Std. Dev.
HOG Image Pipeline 0.065 0.056 0.071 0.063
CNN Image Pipeline 0.0068 0.0053 0.0135 0.012
Traditional Text Pipeline 0.126 0.066 0.123 0.067

For example, in the HOG pipeline, we use a random forest
estimator, with the number of trees as a hyperparameter. The
hyperparameter sets determined by the SmartSearch consis-
tently choose the highest number of trees (ten). This is what
we would expect, as our random forest classifier generally
improves with additional trees. However, the computation time
also scales linearly with the number of trees, so the hyperpa-
rameter sets chosen take longer to evaluate. In future work, a
scoring metric that incorporates a tradeoff between accuracy
and computation time — perhaps by incorporating a linear
penalty on the amount of time spent running the pipeline —
could be implemented to incorporate a time-accuracy tradeoff
based on user preferences.

These initial experiments focused on obtaining accurate
estimates that are adequate for use in Bayesian hyperparameter
optimization, not empirical speed improvements. While we
see that the performance improvements are comparable, we
do not see significant computational speed-ups in our initial
experiments. This observation is due to three factors: 1) The
datasets used are small, so the asymptotic benefits of the BLB
algorithm are not realized; 2) We have not tuned the Apache
Spark-specific parameters, leading to greater overhead; 3)
Our implementation is in Python, incurring substantially more
overhead than an implementation in a lower-level language.
When we increased the computational power of the cluster
machines, we saw that the speed improvements were small.
We attribute this to the small dataset size, which leads to the
Apache Spark overhead dominating the computation time.

The performance improvements for the CNN image pipeline
are smaller than those for the more traditional pipelines, which
aligns with the intuitive conclusion that neural networks need
large amounts of data to achieve high accuracies. The amount
of data given in each bag is [360000°°] = 542, so the reduced
improvement in the hyperparameter optimization is reasonable
given the extremely small size of the dataset.

The performance improvements seen are impressive, as even
operating on small subsets of the data leads to performance
improvements on par with pipeline evaluations on the entire
datasets. These empirical results demonstrate the validity of
using BLB for pipeline evaluation in hyperparameter opti-
mization, and future work can optimize the existing Deep
Mining system to reduce computational overhead and take full
advantage of this asymptotic improvement.

VII. RELATED WORK

The hyperparameter optimization community has been ex-
tremely active in recent years. This summary is not intended
to give a comprehensive list of current hyperparameter tuning
methods, but rather a coarse overview. One approach that has
come out of this research is Bayesian optimization, which
treats the pipeline as a black box function. Bayesian optimiza-
tion uses Gaussian Process (GP) to search the space [1], [16],
which is similar to our Gaussian copula process, as presented
in Section V. Numerous other methods to model the search
space and then sample from it have also been developed,
including multi-armed bandit methods in [17]. The Tree of

369

Parzen Estimators has been used, along with the Expected
Improvement acquisition function, which models the posterior
indirectly using p(z|y) and p(y) rather than modeling p(y|z)
directly as in Gaussian processes [16]. Reinforcement learning
has been used on neural network architectures [18], and gradi-
ent descent has been shown to be effective for some continuous
hyperparameters [19]. The radial basis function has also been
used [20], as well as a spectral approach that improves on
the asymptotic complexity of the GP fitting process [21].
Multi-task Gaussian processes have been applied to Bayesian
hyperparameter optimization to incorporate information from
previous optimizations [22], and transformations have been
applied to construct a more flexible prior for the Bayesian
optimization [23]. In addition, several open source systems
have also been released that highlight these methods and
enable comparison on benchmarks. Examples of these systems
are noted in Table VII.

Considering the existence of these numerous approaches

as well as related open source software tools, one would be
forgiven for asking: Why do we need yet another hyperparam-
eter optimization system?. We believe our system addresses
certain needs that have been overlooked by others. First of
all, most existing systems focus on the questions how best can
we model the search space?, and how best can we query this
model?, aiming to reduce the number of iterations necessary.
To compare these approaches, the community has established a
number of benchmark datasets and black box functions. In our
experience, we find that this emphasis, while important in its
own right, does not consider the challenges presented by real-
world industrial scale data sets and problems. We highlight
some of these challenges below.
Tuning data science pipeline vs. machine learning
pipelines: We make a distinction between machine learning
pipelines and data science pipelines — one that is not often
made explicit in existing literature. In practice, data science
pipelines include earlier steps not present in machine learning
pipelines, such as preprocessing and feature extraction steps
— e.g. bag-of-words (for natural language) or HOG feature
extraction (in case of images).

Consider the problem of tuning a pipeline that consists of
only a Support Vector Machine (SVM) classifier. Here, data
is expected to be delivered in the X and y format, where
X is a matrix of features and y is a vector of labels. While
this method can be called a "data science pipeline," the term
is misleading because the method consists of only one step.
Even if it extends one step further, incorporating Principal
Component Analysis (PCA) and scaling the feature matrix in
addition to SVM, this is still more of a "machine learning
pipeline" than a "data science pipeline."

By making this distinction, Deep Learning can differenti-
ate between systems that are focused on machine learning
pipelines, and those that should be extended to entire data sci-
ence pipelines. It is worth noting that the kind of pipeline also
has implications as to which data domains and representations
that should be addressed.

The limitations of the “black box” approach to tuning: The

New
Hyperparameter
_

-

Fig. 4. Illustration of the first common abstraction approach. The optimization
algorithm gives hyperparameter sets to and gets performance metrics from the
pipeline, which it treats as a black box. User is responsible for writing the
software for the pipeline and its execution.

{ User J - [Custom software }

Score

aforementioned hyperparameter optimization systems typically
take one of two “black box” approaches. In the first case,
they treat the performance of a pipeline as a function, for
which they provide inputs (hyperparameter sets) and receive
an output value (e.g. a scoring metric). These systems place
the burden of pipeline implementation entirely on the user.
Arguably, this abstraction can aid in tuning entire data sci-
ence pipelines as well. Figure 4 presents a schematic for
this abstraction. Table VII describes systems that use this
framework, including Spearmint, the startup SigOpt, MOE,
SMAC, BayesOpt, REMBO, and HPOlib.

TABLE III
(APPROXIMATE) CLASSIFICATION OF CURRENT STATE-OF-ART
HYPERPARAMETER SYSTEMS. BB REFERS TO THE TYPE OF API OR THE
BLACK BOX FUNCTION METHOD THEY USE. | IMPLIES THE API
DESCRIBED IN FIGURE 4 IS USED. 2 IMPLIES THAT THE API DESCRIBED IN
FIGURE 5 IS USED.

System |BB Implementation Paper

Spearmint | 1 https://github.com/HIPS/Spearmint Various
SigOpt | 1 https://sigopt.com/getstarted [24]
MOE|1 https://github.com/Yelp/MOE [25]
SMAC|1 https://github.com/automl/SMAC3 [3]
BayesOpt | 1 https://github.com/rmcantin/bayesopt [26]
REMBO |1 https://github.com/ziyuw/rembo [27]
HPOIib | 1 https://github.com/automl/hpolib [4]
Hyperopt | 1 https://github.com/hyperopt/hyperopt [28]
Hyperopt-sklearn | 2 https://github.com/hyperopt-sklearn [29]
Auto-WEKA |2 http://www.cs.ubc.ca/labs/beta/Projects/autow¢R@]
Hyperband |2 https://github.com/zygmuntz/hyperband [17]
TPOT |2 https://github.com/rhiever/tpot [31]
Auto-sklearn |2 http://automl.github.io/auto-sklearn/stable/ [32]
Osprey |2 https://github.com/msmbuilder/osprey [33]
Optunity |2 https://github.com/claesenm/optunity [34]
mlr |2 https://github.com/mlr-org/mlr [35]
Scikit-optimize | Other https://github.com/scikit-optimize/scikit- [36]

optimize

While this approach allows users the flexibility to implement

arbitrary pipelines, it also has multiple weaknesses:

o The lack of an API for specifying pipelines and exposing
hyperparameters results in significantly increased user
effort in constructing pipelines.

o Because users are responsible for implementing the
pipeline and processing the data, their implementation
alone determines the efficiency of the hyperparameter
optimization process. No framework is provided for them
to accelerate the hyperparameter set evaluations.

o The question of importing data is entirely ignored, forcing
users to spend time aggregating and formatting data.

In the other typical approach to hyperparameter optimiza-

tion, system designers choose a predefined set of implemented
pipelines, which requires input data to be in a matrix format.

370

) [Pipeline 1] :

X Matrix | = :

Y Label ! ipeline H

User ! Optimizer . ; :
Pipeline/ 1 : : |

Classifier ! :

L (Pipeline k]

Fig. 5. Tllustration of the second common abstraction approach. The user
provides data in a matrix format (either X, Y, or X and Y in a cross
validation split). The optimizer chooses a pipeline from within its implemented
machine learning algorithms, and returns a classifier or pipeline with the
highest score to the user.

Users of the system cannot include custom pipelines that they
judge to be appropriate for their problems. These systems also
constrain those users by forcing them to choose among a set
suite of classifiers or regressors, as well as the occasional
feature preprocessing method. Figure 5 illustrates the schema
for this abstraction.

These systems are effective for many small, matrix-
formatted datasets, achieving impressive results on benchmark
datasets. However, they are much less well-suited for applica-
tions on large datasets in non-matrix format (e.g., relational
databases), and the lack of clear APIs to specify custom
pipelines severely limits their effectiveness.

VIII. CONCLUSION

We have made multiple contributions through this work.
We:

o Formulated a powerful pipeline abstraction using scikit-
learn utilities,

« Implemented a system incorporating BLB, using Apache
Spark and a structured pipeline interface to evaluate
scores of data science pipelines,

o Constructed multiple pipelines using the Deep Mining
system,

« Evaluated the effectiveness of BLB evaluation for data
science pipelines, showing empirically that performance
improvements are comparable to non-BLB pipeline eval-
uations,

o Formulated new algorithms using copula processes to
improve upon the Gaussian process model of the hyper-
parameter space, and

« Developed an open-source Bayesian hyperparameter op-
timization implementation using Gaussian processes with
multiple acquisition functions.

The Deep Mining system incorporates distributed computa-
tion, subsampling methods, and conditional pipeline evaluation
to allow hyperparameter optimization of complex pipelines on
large datasets. The empirical results of this paper demonstrate
the validity of using BLB for pipeline evaluation in hy-
perparameter optimization, showing a substantial asymptotic
improvement that enables scalable systems capable of tuning
the computationally intensive applications of modern data
science.

371

[1]

[2]

[3]

[4]

[5]

[6]
[71

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in Advances in neural information
processing systems, 2012, pp. 2951-2959.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in Neural Information
Processing Systems, 2011, pp. 2546-2554.

F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration.” LION, vol. 5, pp. 507—
523, 2011.

K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos,
and K. Leyton-Brown, “Towards an empirical foundation for assess-
ing bayesian optimization of hyperparameters,” in NIPS workshop on
Bayesian Optimization in Theory and Practice, vol. 10, 2013.

D. G. Lowe, “Object recognition from local scale-invariant features,” in
Computer vision, 1999. The proceedings of the seventh IEEE interna-
tional conference on, vol. 2. Ieee, 1999, pp. 1150-1157.

A. Kleiner, A. Talwalkar, P. Sarkar, and M. 1. Jordan, “A Scalable
Bootstrap for Massive Data,” ArXiv e-prints, Dec. 2011.

L. Oneto, B. Pilarz, A. Ghio, and D. Anguita, “Model selection for
big data: Algorithmic stability and bag of little bootstraps on gpus,” in
Proceedings. Presses universitaires de Louvain, 2015, p. 261.

C. Garnatz, “Trusting the black box: Confidence with bag of little
bootstraps,” Ph.D. dissertation, Pomona College, 2015.

B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel, K. Keutzer,
J. Shalf, K. Yelick, and A. Fox, “SEJITS: Getting productivity and
performance with selective embedded JIT specialization,” in Workshop
on Programmable Models for Emerging Architecture (PMEA), 2009.
[Online]. Available: http://parlab.eecs.berkeley.edu/publication/296

S. A. Kamil, “Productive high performance parallel pro-
gramming with auto-tuned domain-specific ~embedded lan-
guages,” Ph.D. dissertation, EECS Department, University
of California, Berkeley, Jan 2013. [Online]. Available:

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-1.html

C. Rasmussen and C. Williams, Gaussian Processes for
Machine Learning, ser. Adaptive Computation And Ma-
chine Learning. MIT Press, 2005. [Online]. Available:

http://www.gaussianprocess.org/gpml/chapters/

A. Wilson and Z. Ghahramani, “Copula processes,” in Advances in
Neural Information Processing Systems, 2010, pp. 2460-2468.

E. Snelson, C. E. Rasmussen, and Z. Ghahramani, “Warped gaussian
processes,” Advances in neural information processing systems, vol. 16,
pp. 337-344, 2004.

B. W. Silverman, Density estimation for statistics and data analysis.
CRC press, 1986, vol. 26.

S. van der Walt, J. L. Schonberger, J. Nunez-Iglesias, F. Boulogne,
J. D. Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image
contributors, “scikit-image: image processing in Python,” PeerJ, vol. 2,
p. €453, 6 2014. [Online]. Available: http://dx.doi.org/10.7717/peerj.453
J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in Neural Information
Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2011,
pp. 2546-2554. [Online]. Available: http://papers.nips.cc/paper/4443-
algorithms-for-hyper-parameter-optimization.pdf

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A Novel Bandit-Based Approach to Hyperparameter Op-
timization,” ArXiv e-prints, Mar. 2016.

B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing Neural Network
Architectures using Reinforcement Learning,” ArXiv e-prints, Nov. 2016.
D. Maclaurin, D. Duvenaud, and R. P. Adams, “Gradient-based Hyper-
parameter Optimization through Reversible Learning,” ArXiv e-prints,
Feb. 2015.

G. Diaz, A. Fokoue, G. Nannicini, and H. Samulowitz, “An effective
algorithm for hyperparameter optimization of neural networks,” ArXiv
e-prints, May 2017.

E. Hazan, A. Klivans, and Y. Yuan, “Hyperparameter Optimization: A
Spectral Approach,” ArXiv e-prints, Jun. 2017.

K. Swersky, J. Snoek, and R. P. Adams, “Multi-task bayesian optimiza-
tion,” in Advances in neural information processing systems, 2013, pp.
2004-2012.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

J. Snoek, K. Swersky, R. Zemel, and R. Adams, “Input warping for
bayesian optimization of non-stationary functions,” in International
Conference on Machine Learning, 2014, pp. 1674—1682.

I. Dewancker, M. McCourt, S. Clark, P. Hayes, A. Johnson, and G. Ke,
“Evaluation System for a Bayesian Optimization Service,” ArXiv e-
prints, May 2016.

Yelp, “Metric optimization
https://github.com/Yelp/MOE, 2017.

R. Martinez-Cantin, “Bayesopt: A bayesian optimization library for
nonlinear optimization, experimental design and bandits,” The Journal
of Machine Learning Research, vol. 15, no. 1, pp. 3735-3739, 2014.
Z. Wang, F. Hutter, M. Zoghi, D. Matheson, and N. de Feitas, “Bayesian
optimization in a billion dimensions via random embeddings,” Journal
of Artificial Intelligence Research, vol. 55, pp. 361-387, 2016.

J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library
for optimizing the hyperparameters of machine learning algorithms,” in
Proceedings of the 12th Python in Science Conference, 2013, pp. 13-20.
B. Komer, J. Bergstra, and C. Eliasmith, “Hyperopt-sklearn: automatic
hyperparameter configuration for scikit-learn,” in ICML workshop on
AutoML, 2014.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka:
Automated selection and hyper-parameter optimization of classification
algorithms,” CoRR, abs/1208.3719, 2012.

R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, “Evaluation
of a tree-based pipeline optimization tool for automating data science,” in
Proceedings of the Genetic and Evolutionary Computation Conference
2016, ser. GECCO ’16. New York, NY, USA: ACM, 2016, pp. 485—
492. [Online]. Available: http://doi.acm.org/10.1145/2908812.2908918
M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,” in
Advances in Neural Information Processing Systems, 2015, pp. 2962—
2970.

R. T. McGibbon, C. X. Herndndez, M. P. Harrigan, S. Kearnes,
M. M. Sultan, S. Jastrzebski, B. E. Husic, and V. S. Pande, “Osprey:
Hyperparameter optimization for machine learning,” The Journal of
Open Source Software, vol. 1, no. 5, sep 2016. [Online]. Available:
https://doi.org/10.21105/joss.00034

M. Claesen, J. Simm, D. Popovic, and B. Moor, “Hyperparameter tuning
in python using optunity,” in Proceedings of the International Workshop
on Technical Computing for Machine Learning and Mathematical En-
gineering, 2014, pp. 6-7.

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus,
G. Casalicchio, and Z. M. Jones, “mlr: Machine learning in r,” Journal
of Machine Learning Research, vol. 17, no. 170, pp. 1-5, 2016.
[Online]. Available: http://jmlr.org/papers/v17/15-066.html

M. K. et. al., “Scikit-optimize,” https://github.com/scikit-optimize/scikit-
optimize, 2017.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281-305, 2012.

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman,
D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin,
R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar,
“Mllib: Machine learning in apache spark,” J. Mach. Learn. Res.,
vol. 17, no. 1, pp. 1235-1241, Jan. 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2946645.2946679

T. Domhan, J. T. Springenberg, and F. Hutter, “Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation
of learning curves.” in IJCAIL, 2015, pp. 3460-3468.

T. Horvith, R. G. Mantovani, and A. C. de Carvalho, “Effects of random
sampling on svm hyper-parameter tuning,” in International Conference
on Intelligent Systems Design and Applications. Springer, 2016, pp.
268-278.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

Dask Development Team, Dask: Library for dynamic task scheduling,
2016. [Online]. Available: http://dask.pydata.org

M. Zaharia, An architecture for fast and general data processing on
large clusters. Morgan & Claypool, 2016.

engine (moe),”

[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]
[54]

372

M. M. McKerns, L. Strand, T. Sullivan, A. Fang, and M. A. G. Aivazis,
“Building a Framework for Predictive Science,” ArXiv e-prints, Feb.
2012.

F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

C. Z. Mooney and R. D. Duval, Bootstrapping: A nonparametric
approach to statistical inference. Sage, 1993, no. 94-95.

S. Dubois, “Deep mining : Copula-based hyper-parameter optimization
for machine learning pipelines,” Master’s thesis, Ecole polytechnique
- Massachusetts Institute of Technology, Massachusetts Institute of
Technology - CSAIL, 2015.

A. Anderson, S. Dubois, A. Cuesta-Infante, and K. Veeramachaneni,
“Sample, estimate, tune: Scaling bayesian auto-tuning of data science
pipelines,” in Data Science and Advanced Analytics (DSAA), 2017. IEEE
International Conference on. IEEE, 2017, pp. 1-10.

E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” CoRR, vol.
abs/1012.2599, 2010. [Online]. Available: http://arxiv.org/abs/1012.2599
H. B. Nielsen, S. N. Lophaven, and J. Sondergaard, “Dace, a matlab
kriging toolbox,” Informatics and mathematical modelling. Lyngby—
Denmark: Technical University of Denmark, DTU, 2002.

B. L. Welch, “The significance of the difference between two means
when the population variances are unequal,” Biometrika, vol. 29, no.
3-4, pp. 350-362, 1938.

Student, “The probable error of a mean,” Biometrika, pp. 1-25, 1908.
G. Bradski, Dr. Dobb’s Journal of Software Tools.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, 2001.

