
Towards Automatically Linking Data Elements

by

Katharine Xiao

S.B. Electrical Engineering & Computer Science, Massachusetts
Institute of Technology (2016)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Katharine Xiao, MMXVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 26, 2017

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Kalyan Veeramachaneni

Principal Research Scientist
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Christopher J. Terman

Chairman, Department Committee on Graduate Theses



2



Towards Automatically Linking Data Elements

by

Katharine Xiao

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2017, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

When presented with a new dataset, human data scientists explore it in order to
identify salient properties of the data elements, identify relationships between enti-
ties, and write processing software that makes use of those relationships accordingly.
While there has been progress made on automatically processing the data to gen-
erate features or models, most automation systems rely on receiving a data model
that has all the meta information about the data, including salient properties and
relationships. In this thesis, we present a first version of our system, called ADEL-
Automatic Data Elements Linking. Given a collection of files, this system generates
a relational data schema and identifies other salient properties. It detects the type
of each data field, which describes not only the programmatic data type but also the
context in which the data originated, through a method called Type Detection. For
each file, it identifies the field that uniquely describes each row in it, also known as a
Primary Key. Then, it discovers relationships between different data entities with Re-
lationship Discovery, and discovers any implicit constraints in the data through Hard
Constraint Discovery. We posit two out of these four problems as learning problems.

To evaluate our algorithms, we compare the results of each to a set of manual
annotations. For Type Detection, we saw a max error of 7%, with an average error
of 2.2% across all datasets. For Primary Key Detection, we classified all existing pri-
mary keys correctly, and had one false positive across five datasets. For Relationship
Discovery, we saw an average error of 5.6%. (Our results are limited by the small
number of manual annotations we currently possess.)

We then feed the output of our system into existing semi-automated data science
software systems – the Deep Feature Synthesis (DFS) algorithm, which generates
features for predictive models, and the Synthetic Data Vault (SDV), which generates
a hierarchical graphical model. When ADEL’s data annotations are fed into DFS, it
produces similar or higher predictive accuracy in 3/4 problems, and when they are
provided to SDV, it is able to generate synthetic data with no constraint violations.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist

3



4



Acknowledgments

I would like to first and foremost thank my advisor Kalyan for the many hours of

feedback, guidance, and iteration put into this thesis project. I would not have been

able to finish this thesis to this quality without his ideas and expertise.

I would also like to thank Carles for his manual annotations that provided the

baseline for my testing results, Roy for his initial help in understanding the Synthetic

Data Vault, and Arash for his wonderful graphics. A special thanks to Max and the

other engineers behind Deep Feature Synthesis for helping me run my results.

We acknowledge generous funding support from Accenture under their program

AI for Software Testing.

Finally, thanks to all my lab mates in the Data to AI lab who listened to my

presentations and progress, and provided feedback.

5



6



Contents

1 Introduction 15

1.1 Towards furthering data science automation . . . . . . . . . . . . . . 17

1.1.1 The Synthetic Data Vault . . . . . . . . . . . . . . . . . . . . 17

1.1.2 Deep Feature Synthesis . . . . . . . . . . . . . . . . . . . . . . 18

1.1.3 Different Views . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Automatic Data Element Linking . . . . . . . . . . . . . . . . . . . . 18

1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Thesis Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Concepts and Terminology 21

2.1 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Primary Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 Foreign Key Relationships . . . . . . . . . . . . . . . . . . . . 22

2.1.3 Hard Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Overview - ADEL 25

3.1 The meta.json File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Type detection and relationship discovery 33

4.1 Type detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Type Detection Algorithm . . . . . . . . . . . . . . . . . . . . 34

4.2 Primary Key Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 The Primary Key Discovery Algorithm . . . . . . . . . . . . . 38

7



4.3 Relationship Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 The Relationship Discovery Algorithm . . . . . . . . . . . . . 41

5 Constraint Discovery 45

5.1 Motivation for discovering hard constraints . . . . . . . . . . . . . . . 45

5.2 Discovering hard constraints . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Hard Constraint Discovery Algorithm . . . . . . . . . . . . . . 46

5.2.2 Simple optimizations . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Testing Automated Discovery 51

6.1 Collecting Manual Annotations . . . . . . . . . . . . . . . . . . . . . 51

6.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2.1 Schema Overview . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4.1 Type Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4.2 Primary Key Detection . . . . . . . . . . . . . . . . . . . . . . 62

6.4.3 Relationship Discovery . . . . . . . . . . . . . . . . . . . . . . 62

6.5 Towards Improving Our Learning Algorithms . . . . . . . . . . . . . 64

7 Towards Automating Data Science Endeavors 65

7.1 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Deep Feature Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2.1 Connecting the Pieces . . . . . . . . . . . . . . . . . . . . . . 67

7.2.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.3 Synthetic Data Vault . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8



7.3.1 Connecting the Pieces . . . . . . . . . . . . . . . . . . . . . . 69

7.3.2 Hard Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Conclusion and Future Work 73

8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A Synthetic Data Vault 75

A.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2 SDV API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.3 API Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.4 API Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B ADEL API 79

B.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.2 Schema Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.2.1 Hard Constraint Transformations . . . . . . . . . . . . . . . . 80

B.3 Testing and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.3.1 Isolating Modules . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.4 Generating Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C Collecting manual annotations for data 83

C.1 Type Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

C.2 Primary Key Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 85

C.3 Relationship Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 86

C.4 Hard Constraints Discovery . . . . . . . . . . . . . . . . . . . . . . . 88

9



10



List of Figures

2-1 An illustration of a database foreign key relationship. . . . . . . . . . 23

3-1 This is an overview of the tasks of the Automatic Data Element Dis-

covery (ADEL) process, along with the different tasks’ results. Given

the path to a directory of csv files, ADEL will populate a schema file

by learning the types of the tables’ fields, find the primary keys of each

table, discover relationships between the tables, and finally discover

any hard constraints within the individual tables. This information

will be summarized in an output schema file, and partially-populated

schema files can be extracted from any point in the pipeline. . . . . . 26

4-1 Type and subtype classifications for the SDV. The type that is not

shown is ’text’ which is not synthesized. . . . . . . . . . . . . . . . . 34

6-1 A summary of the Airbnb dataset types and relationships. . . . . . . 54

6-2 A summary of the Rossmann dataset types and relationships. . . . . 55

6-3 A summary of the Telstra dataset types and relationships. . . . . . . 56

6-4 A summary of the Biodegradability dataset types and relationships. . 56

6-5 A summary of the Mutagenesis dataset types and relationships. . . . 56

6-6 This figure depicts the automated testing suite for evaluating type

detection, primary key detection, and relationship discovery. Each

testing module takes in a partially-filled file of annotations to feed

into each respective algorithm. The output is then compared with the

original manual annotations file. . . . . . . . . . . . . . . . . . . . . . 59

11



7-1 The Employees dataset, used for analyzing hard constraints. . . . . . 71

A-1 The SDV workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C-1 UI to collect annotations for a table’s types. . . . . . . . . . . . . . . 84

C-2 UI to collect annotations for a table’s primary key. . . . . . . . . . . 86

C-3 UI to collect annotations for foreign keys between two tables. . . . . . 87

C-4 UI to collect annotations for hard constraints within a table. . . . . . 89

12



List of Tables

4.1 A list of the features used in the type classification decision tree model. 36

4.2 A list of features calculated by the foreign key classification algorithm,

as presented in Rostin et al. [19]. These features are extracted from an

inclusion dependency pair to determine if the inclusion dependency is

a foreign key reference or not. In this table, 𝐹 is the potential foreign

key field and 𝑃 is the potential primary key field. . . . . . . . . . . . 44

5.1 A summary of the discussed hard constraints and the corresponding

transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Parameters of the datasets. The # Fields per dataset corresponds to

the number of type-classification examples that will be available for

training and testing. Similarly, the # Inclusion Dependencies tells

us the number of relationship-discovery examples that are available

for training and testing for a certain dataset. The # FK references

corresponds to the number of positive training examples available for

relationship discovery. The # Tables corresponds to the number of

primary key identifications that will be made for a given dataset. . . 53

6.2 Type misclassifications for each dataset, broken down by type. The

values for each column show the ratio of the number of fields that

should have been classified as the type indicated, but were instead

classified as something else, over the total number of fields of that type. 61

13



6.3 Primary key results: False positives for each dataset - the number of

fields that were not primary keys, but were classified as primary keys,

over the total number of primary keys. . . . . . . . . . . . . . . . . . 62

6.4 Foreign key relationship results: The number of missed foreign keys

over the total number of foreign keys per dataset. . . . . . . . . . . . 62

7.1 The prediction problem for each of these datasets is to predict the value

of the specified field, which is part of the listed table. . . . . . . . . . 68

7.2 The predictive accuracy results of the control and the Automatic Data

Element Linking (ADEL) -generated schema for each dataset. . . . . 69

7.3 SDV Results: The percentage of violations in SDV-generated synthetic

data, with the hard constraints enforcement and without. . . . . . . . 72

C.1 The information that should be captured in a "type_classification"

database when an annotation is submitted. . . . . . . . . . . . . . . . 84

C.2 The information that should be captured in a "pk_classification" database

when an annotation is submitted. . . . . . . . . . . . . . . . . . . . . 85

C.3 The information that should be captured in a "fk_classification" database

when an annotation is submitted. . . . . . . . . . . . . . . . . . . . . 87

C.4 The information that should be captured in a "hc_classification" database

when an annotation is submitted. . . . . . . . . . . . . . . . . . . . . 89

14



Chapter 1

Introduction

From virtual assistants to chess Grandmasters, more and more platforms are striving

to replicate human intuition and problem solving. In data science, researchers are

striving to solve problems by deriving predictive models using machine learning ap-

proaches. Platforms like Kaggle [13] host predictive modeling competitions to try and

find the model that best captures what human intuition is so capable of identifying

– semantic relationships and their context – along with the software to process it.

When given a dataset, a data scientist’s first task is to understand the data. This

involves finding and discovering properties of data elements – columns, rows, and

relationships in the data. Such relationships include many-to-one relationships – for

example, if many entries in a table representing Store Visits reference the same entry

in the Customers table, this implies that a customer visited a store multiple times.

Once a data scientist identifies the properties and relationships within a dataset,

he can then write software to process this data and generate features, or model it

using a probability distribution. Here, let’s consider how the properties of data and

relationships play a role in generating features and models.

Feature generation: Consider a customer table. If one of the fields is the state

where the customer lives, a data scientist may recognize that it is a categorical

variable and choose to process it using one-hot-encoding to generate features

for the machine learning algorithm. The data scientist uses the semantics of

15



the field name and the context to determine that the field type is categorical,

and processes it accordingly.

Similarly, consider a log table that records all transactions across all customers

over a period of time. A data scientist might recognize that a customer may

have multiple transactions recorded in this table. To compute features for a

customer, he/she will then write software to extract a single customer’s trans-

actions and aggregate the data to generate numeric features for that customer.

These numeric features may include, for example, the total number of transac-

tions the customer had, or the number of transactions where the event-type

is card-add.

Modeling: Often, data scientists wish to learn a probability density model for indi-

vidual columns in a table, a joint model for multiple columns, or a hierarchical

graphical model for the entire dataset. To learn a model pdf for individual data

columns, or a joint model, the data scientist would first recognize the types of

variables involved and choose the appropriate distributions. If the data type is

numeric, specifically float, s/he may choose a continuous density model. If the

type is categorical, he/she may apply a transformation before modeling it using

a continuous density model.

To model a hierarchical or nested graphical model, the data scientist may exploit

the one-to-many or one-to-one relationship(s) that exist between different data

entities.

Given that data scientists spend a non-trivial amount of time using their intuition

to understand the data and its context in order to determine these salient properties,

we ask whether we can automatically find these key properties for a given data set.

We are motivated by a few key observations:

Larger datasets: Real world data sets now contain hundreds of data tables and

several hundred fields (if not thousands).

Increased need for data science: With increasing need for data-based analytics,

16



companies are bringing in employees with expertise in data science. These

employees are given the data, but rarely have enough documentation to help

them understand it.

To facilitate this initial stage of the data science process, we propose an automatic

system for linking data elements, which we call ADEL. In its first version, here is

what our system does:

Starting with raw data values in csv files, ADEL automatically detects types

of columns/fields in a file, discovers the primary key for each file, discovers

relationships between different entities (files), and identifies implicit logical or

arithmetic relationships between two or more columns, which are called hard

constraints. It generates a json file with this information.

1.1 Towards furthering data science automation

In the past few years, multiple algorithms and software systems have been developed

to automatically process data, essentially imitating what a data scientist would do

when given a dataset and a goal. These systems assume that relational information

about data is available. Below, we give two examples of such systems.

1.1.1 The Synthetic Data Vault

The Synthetic Data Vault (SDV) generates a hierarchical graphical model given a

dataset with multiple tables. The model then can be used to sample data that is

artificial. If noise is added to the model parameters, it allows users to sample from

a perturbed distribution. The sampled artificial data can be used for testing and

debugging software, and even published to allow a crowd of data scientists to work

on it [17]. The SDV’s algorithm relies on being provided all meta properties of the

data, types for the fields, relationships between multiple tables and the primary key

for each table. In this thesis, by generating this information automatically from a set

of files, we are able to further usage of SDV in a variety of scenarios.

17



1.1.2 Deep Feature Synthesis

Another data science process that builds on top of relational datasets is feature gen-

eration. Competitions, such as the ones hosted on Kaggle [13], and projects, such

as Deep Feature Synthesis (DFS) [14], expect input data that is structured and rela-

tional, and use those data to construct features. Both Kaggle and the automated fea-

ture discovery algorithm DFS utilize a high-level summary of the relational dataset’s

properties and constraints to create features for prediction. These features are ex-

pected to capture semantically important problems to solve a prediction problem.

1.1.3 Different Views

For data scientists or statisticians who prefer to view their data in a different struc-

ture, the schema of a relational dataset would provide enough information to allow

them to restructure the raw data. These different views might provide a less efficient,

but more intuitive way of representing data, such as in MongoDB, which makes use

of embedded fields [12].

All three of the above data science endeavors involve building on structured data

that has already been processed and organized by humans. If we could automatically

detect the same intuitions as the ones captured in relational datasets, we could allow

all of the applications that build on relational datasets to build directly on raw data

with minimal processing and minimal delay.

1.2 Automatic Data Element Linking

The Automatic Data Element Linking (ADEL) platform represents our approach to

capturing the same human intuitions that are present in relational databases. We aim

to create an automated process that reads in raw data from csv files, and generates

a schema that summarizes the dataset’s organization, relationships, and constraints.

This schema can then be generalized, and passed into endpoints such as the Syn-

18



thetic Data Vault (for generative modeling and synthetic data) or Deep Feature Syn-

thesis (for feature creation and predictive learning).

1.3 Goals

Ultimately, we wish to automate the detection of entity types, relationships and

constraints in raw data to produce a relational schema for a dataset.

Success should include:

1. Accuracy: The detected structure, metadata, and constraints should be rela-

tively accurate, and should result in a relatively small percentage of misclassifications

and false positives.

2. Usability: The platform should be intuitive to use, and allow for a balance

between automation and user control.

3. Generalizability: The resulting end-to-end platform should produce output that

is useful for many different data science endeavors that build on relational datasets.

1.4 Thesis Roadmap

The remainder of the thesis is organized as follows:

Chapter 2 reviews key concepts and databases that are relevant in this thesis.

Chapter 3 gives an overview of the Automatic Data Element Linking process, breaking

down the end goal into 4 discrete steps.

Chapter 4 provides the algorithms and procedures used to extract general struc-

ture information. Chapter 5 delves into the technical details and the algorithm used

to detect hard constraints, as well as the system created to propagate these con-

straints. Chapter 6 reviews the initial results of the automated detection algorithms,

and summarizes the key findings.

In Chapter 7, we go through two endpoints to explore the applications of our

Automatic Data Element Linking output. Chapter 8 proposes future work and wraps

up the thesis with a conclusion.

19



This thesis presents a system for automatically detecting essential structural and

semantic-based properties necessary for dataset analysis.

20



Chapter 2

Concepts and Terminology

In this thesis, we focus on generating a relational schema. In this chapter, we define

the properties that we will be interested in identifying. These properties are present

in all types of data, independent of how they are structured.

2.1 Databases

A database is a structured collection of data with some implicit meaning. The data

in a database is typically derived or collected from some real world source, and has

an intended application. A database is made up of different tables, each table with

columns that each represent a entity with a different data type. A row, or a tuple, of

a table represents an instance of this table object.

2.1.1 Primary Keys

In each table, there is a designated primary key that comprises of a subset of the

table columns. The primary key satisfies a uniqueness constraint, requiring that the

primary key value of any two rows in the table must be distinct. This allows for the

primary key to uniquely identify every row in a given table. A primary key must also

be minimal, such that removing any of the fields in the primary key subset would

break the uniqueness constraint.

21



2.1.2 Foreign Key Relationships

In this thesis, we focus on relational data schemas, which consist of relations between

entities of data. A foreign key is a many-to-one relationship that describes such

a reference, in which a column of one table points to the primary key (the unique

identifier) of another column. In this relationship, the values in the foreign key

column, 𝐹𝐾, of the first table must be a subset of the domain of the second table’s

primary key , 𝑃𝐾. In other words, 𝑡1[𝐹𝐾] = 𝑡2[𝑃𝐾], where 𝑡1 represents a row in

the first table, and 𝑡2 represents a row in the second table. We call the first table the

child table and the second table the parent table, as the child table has a reference

into the parent table.

For example, we might have a parent table representing the Customers of a store,

and a child table representing all of the Visits of every Customer. Many entries

in the Visits table could reference the same Customer. Each entry in the Visits

table would have a foreign key reference to a specific Customer. This relationship is

illustrated in Figure 2-1.

For all valid foreign key references, the set of values in the foreign key field is a

subset of the set of values in the referenced primary key field. We call this property

an inclusion dependency.

2.1.3 Hard Constraints

In databases, there are often constraints that need to be met, which are obvious from

the context the data was collected from. We call these constraints hard constraints.

Types of hard constraints include arithmetic constraints, which can be a specification

that Col A must always be greater than Col B within a given entry. There are also

temporal constraints, which constrain new entries based on previous entries. In this

thesis, we focus on arithmetic hard constraints within a row.

22



Figure 2-1: An illustration of a database foreign key relationship.

23



24



Chapter 3

Overview - ADEL

We present an overview of the Automatic Data Element Discovery process, and de-

scribe how the larger goal of creating a relational schema is broken down into stages.

Each of the following sections describes one stage of the four-part process. A user can

invoke each of these stages individually to selectively infer information, or the user

can invoke all of these stages in order to generate a full schema.

A summary of this process is presented in Figure 3-1. From a user’s perspective

the flow is as follows:

1. Place all csv files into a single directory, where each csv file contains a single

table.

2. Call gen_empty_meta(directory_path), which creates a template json file,

with only superficial information, such as the number of rows, filled in.

3. Detect the types of the fields in each file by calling classify_field_types.

4. Detect the primary key of each file by calling find_PKs.

5. Discover the relationships within the dataset with discover_relationships.

6. Discover any hard constraints within the tables with discover_hard_constraints.

A more detailed look at the Automatic Data Element Discovery API is presented

in Appendix B. The final output of this process is a json file, called meta.json, which

includes all of the information deduced during the four algorithms. After providing

an overview of each of the four algorithms, we describe the meta.json output file and

its format.

25



Table

Learn TypesTask:

Result:

Detect PK

Number
DatetimeID

Table 1

PK

Table
YX

YX >

Table 2

PK

PK

Table 3

Discover
Relationships

Discover
Hard Constraints

Table 1 Table 2

Table 3

Figure 3-1: This is an overview of the tasks of the Automatic Data Element Discovery
(ADEL) process, along with the different tasks’ results. Given the path to a directory
of csv files, ADEL will populate a schema file by learning the types of the tables’ fields,
find the primary keys of each table, discover relationships between the tables, and
finally discover any hard constraints within the individual tables. This information
will be summarized in an output schema file, and partially-populated schema files can
be extracted from any point in the pipeline.

Detect Types In the first step, we find the type and subtype for each field. The

type describes, at a high level, what kind of data is represented in a field. The

different types are categorical, number, ID, datetime, and text. We are also

interested in the subtype of each field, which breaks down each type into more

specific categories. For example, a categorical type can be further classified as

Boolean or ordered. The algorithm to detect field types is presented in Section

4.1.1.

Detect Primary Keys Each table has a set of fields that is used to uniquely identify

each row, known as the primary key. In this next step, we identify the most

likely primary key of each table, based on properties based in both the raw data

and semantics. The algorithm to detect primary keys is presented in Section

4.2.

Discover Relationships After we know each table’s primary keys, we determine if

any of these primary keys are part of any foreign key references. These inter-

table relationships are important for understanding how tables reference each

26



other, and as a result are extremely useful in feature generation (DFS) [14] and

building hierarchical graphical models (SDV) [17]. The algorithm to discover

relationships is presented in Section 4.3.

Discover Hard Constraints Finally, we detect a subset of predetermined hard

constraints. These constraints are relevant to platforms that focus on model

generation and synthetic data generation, as the synthetic data should adhere

to these implicit constraints. The problem of hard constraints is explored in

Chapter 5.

3.1 The meta.json File

The metadata and structural information about a relational database that is derived

from the above four algorithms is now used to populate in a file called meta.json,

which is all of the metadata structured in a json format. At the highest level, the file

contains information about the path to the dataset, as well as a list of table objects.

Each table object contains:

∙ The path to the table itself.

∙ The table’s primary key.

∙ Whether or not the table csv file contains a header row.

∙ The number of rows.

∙ A list of objects describing the fields in a table.

∙ A list of hard constraints for the table, if any exist.

The example metadata object of a table called users is shown below.

{

"path": "",

"tables": [

27



{

"path": "users.csv",

"name": "users",

"headers": true,

"fields": [

...

],

"primary_key": "id",

"number_of_rows": 213451,

"hard_constraints:" {

...

}

},

...

]

}

The hard constraints entry is a mapping from the two types of potential constraints

to a list of those respective constraints. The first type is of form 𝐴 > 𝐵, and we will

call this type of constraint ’GT’ for ’Greater Than.’ The second type has form 𝐴+𝐵 =

𝐶, and we will call this ’EQ’ for ’Equal.’ To specify the individual constraints, we

need to specify the fields A, B and potentially C, which participate in the constraint.

We also note the original field type, which is shared by all fields in the constraint.

An example hard constraints entry might look like:

"hard_constraints:" {

"GT": [

{

colA: "to_date",

colB: "from_date",

type: "datetime"

28



}

],

"EQ": [

{

colA: "count_one",

colB: "count_two",

colC: "total_count",

type: "integer"

}

]

}

Each field objects contains:

∙ The field name.

∙ The field type.

∙ The field subtype.

∙ The number of unique values.

∙ If the field is of type datetime, the datetime format.

∙ If the field is of type ID, the regex.

∙ The foreign key reference to another table’s primary key, if one exists.

The type and subtype options are shown in Figure 4-1.

{

"name": "language",

"type": "categorical",

"subtype": "categorical",

"uniques": 25

}

29



For datetime fields, there is no subtype. Instead, the format of the datetime values

needs to be specified, so applications know how to parse the datetime string when

reading in the raw values.

{

"name": "date_account_created",

"type": "datetime",

"format": "%Y-%m-%d",

"uniques": 92

}

Similarly, if a field is an ID, the regex needs to be specified. There is optionally a

subtype of "primary" if the field is the primary key of a table. If the field is an ID

but not the primary key, the subtype field does not need to be included.

{

"name": "id",

"type": "id",

"subtype": "primary",

"regex": "^.{10}\$",

"uniques": 213451

}

Foreign key references are also encoded in the meta.json files, as shown below.

The ref keyword is used to represent that this field is a foreign key reference to

another field in another table. In the example below, the user_id field is a foreign

key into the id field of the users table.

{

"name": "user_id",

"type": "id",

"regex": "^.{3,10}\$",

30



"ref": {

"table": "users",

"field": "id"

},

"uniques": 135484

}

31



32



Chapter 4

Type detection and relationship

discovery

In this chapter, we present algorithms for three problems - detecting types, discovering

primary keys and discovering relationships.

4.1 Type detection

In our type detection problem, we are interested in categorizing fields into higher-level

types that have semantic and contextual meaning. These higher-level types convey

information about what a value represents. Such information can be used by data

processing routines further down the data science pipeline.

Simply identifying that a value is of a certain programmatic type, such as an

integer, does not convey information about what that value represents in its respective

context. For example, an integer can represent a number, such as in the context of

age. However, it can also represent a Boolean field, with 1 meaning ’yes’ and 0

meaning ’no.’ Furthermore, an integer could represent a year, which is a datetime, or

it could represent one of the seven days of the week, making it categorical. Through

Figure 4-1 we present the ontology of types we are interested in categorizing fields

into, as well as their corresponding subtypes.

The high-level types that exist for Automatic Data Element Discovery are categor-

33



Figure 4-1: Type and subtype classifications for the SDV. The type that is not shown
is ’text’ which is not synthesized.

ical, number, ID, datetime, and text. Categorical types can have a subtype of Boolean,

categorical, and ordered. Number types can have a subtype of integer or float. IDs

have the option of being a primary key. Detection of primary keys is described in

section 4.2.

4.1.1 Type Detection Algorithm

We first determine a field’s type. Depending on the determined type, we then assign it

to one of the corresponding subtypes. We posit type detection as a learning problem:

Given a set of fields 𝑓1 . . . 𝑓𝑘, data corresponding to those fields 𝑑1 . . . 𝑑𝑘, and

human annotations about their higher level type 𝑡𝑦𝑝𝑒1 . . . 𝑡𝑦𝑝𝑒𝑘, can we learn a

model 𝑡𝑑 such that 𝑡𝑦𝑝𝑒𝑖 ← 𝑡𝑑(𝑓𝑖, 𝑑𝑖).

The model 𝑡𝑑(.) can then be used for predicting the higher-level types for data

column whose higher-level type is not known. We use a machine learning approach

to solve this problem, which traditionally involves the following steps:

Step 1: Collect a set of manually annotated data sets. That is, 𝑓1 . . . 𝑓𝑛, 𝑑1 . . . 𝑑𝑛

and their higher-level types annotated manually, 𝑡𝑦𝑝𝑒1 . . . 𝑡𝑦𝑝𝑒𝑛.

Step 2: Extract features that can describe these data columns 𝑑1 . . . 𝑑𝑛. The features

extracted speak to both the data-based and semantic characteristics that may

have played a role in humans classifying them into certain higher-level types.

These features are not specific to any one dataset, and are meant to apply to

generic raw data. In these features, we look for cases in which the ratio of

34



unique values to the number of total values in a field is one, which indicates a

likely ID field. If field values are a programmatic type of integer or float, then

it is likely that the type is number. However, if the built-in type is an integer

but the number of unique values are small, the field is likely categorical.

We also look at semantic features such as if the column name contains certain

phrases such as ’_id’ or ’date’.

The calculated features are listed in Table 4.1

Step 3: Type detection is a multi-class classification problem. Given the features

that describe each data column and the field, we train a decision tree from

Python’s sklearn library, and store the classifier for later use.

Step 4: To validate our classifier, we follow the train-test methodology. We first

partition our dataset into a training set and a testing set. We train the model

on the training partition and test its performance on the test partition.

Learning this model in ADEL: A user can train a type classifier by calling

train_type_classifier on a list of directory paths, which map to the set of training

datasets. The train_type_classifier method will iterate through each field in the

training datasets, and calculate the features listed in Table 4.1 for a given field, as

well as pull out the corresponding manual annotation. Then, the function uses the

extracted field features and labels to learn the classifier using sklearns decision tree.

Using the model in ADEL: A user can find type classifications for all the fields in

a dataset by calling the classify_field_types method on a dataset. This method

uses the previously-trained type classifier to determine types for all the fields in the

given dataset, and writes it to the dataset’s meta.json file.

Detecting Subtypes

Once we determine the field type using our pre-trained classifier, we rely on a hard-

coded set of rules because not every type has a subtype, and the subtype choices for

a given field is at most three. This classification is more straightforward. Here are

how subtypes are identified:

35



Type Classification Features
Ratio of the number of unique values to the total number
of values.
If the number of unique values is less than a hard-coded
categorical threshold.
If the values are ints or floats (built-in type).
If the values are strings (not a numerical built-in type).
If the field name contains ’_id’ or field name is ’id.’
If the field name contains ’date’ or ’time.’

Table 4.1: A list of the features used in the type classification decision tree model.

1. If the field type is number, the corresponding subtype is determined from

the Python pandas library "dtype" parameter, which can detect what built-

in Python primitive type the values are.

2. If the field type is categorical, it is further broken down into subtypes using the

number of unique values in the data corresponding to that field. If number of

unique values (excluding null entries) is ≤ 2, it is type boolean. Otherwise, it

is labeled as categorical. We do not yet have a way of differentiating between

categorical and ordered.

3. If the field is 𝑖𝑑 we resort to primary key detection algorithm described in

Section 4.2.

Format

If a field is classified as a datetime, we also need to find the datetime format, so that

applications can parse the value strings into dates. When determining the format of

datetime, we encode a list of popular datetime formats, such as ’%Y-%m-%d’. Then

we iterate through the list of common datetime formats and try to parse the entire

column with a specific format. If there are no exceptions raised throughout the pars-

ing, then we assign that datetime format to the field.

Regex

If a field is classified as an ID, we must deduce the regex to formalize how the IDs

36



are structured. To determine the regex, we convert the values to strings, and check

for the most common cases:

1. If the values are all numerical [0-9]

2. If the values are all strings [a-z] or [A-Z]

3. If the values are a combination of numeric and string (or if they are other)

4. The min length of the values

5. The max length of the values

Finally, we form a regex string out of the above information.

Related Work

When using a programming language like Python, there are language-specific, built-in

datatypes. For Python, this includes int, float, and string. Python libraries, such as

the data analysis toolkit pandas, have functions to return the value’s associated built-

in type [2]. Apache Spark also has a functionality called inferSchema to generate a

schema from csv data. The inferSchema function also returns built-in types, and can

parse values as a date, but only if the date format is explicitly specified by the user

[1]. Ultimately, these methods of type detection differ from ours, as ours is striving

to automatically determine a higher-level type information.

4.2 Primary Key Discovery

Next, we detect the primary key of each table in the dataset. Our goal is to identify

the primary key given multiple files, which we consider as multiple tables. We assume

that a table does not contain data redundancies (we describe what we mean by this

later), and has a primary key. Taking our simplified problem, we can make a few

optimizations by making note of two properties:

1. The primary key of a table necessarily uniquely identifies each row. This means

that each value of the primary key is unique for all rows.

2. The primary key of a table is a set of one or more fields. This means that

37



the primary key can be one column, which is very common, but can also be a

combination of fields.

4.2.1 The Primary Key Discovery Algorithm

The primary key detection problem can be posited in the following manner:

Given a Table with fields 𝑓1 . . . 𝑓𝑘, find a field 𝑓𝑖 or a set of fields 𝑓𝑖...𝑟, where

𝑖 . . . 𝑟 is a subset of 1 . . . 𝑘, that uniquely determine each row in the table.

To discover primary key for each table, we developed a deterministic algorithm.

The algorithm performs the following steps:

Step 1: Identify the candidate set. In the first step, we find all candidates for

the primary key by making use of property 1. We calculate the ratio of the

number of unique values in the potential primary key set to the total number

of rows. If this ratio is one, then this potential primary key set becomes a

candidate.

Additionally, when looking at primary candidate sets that contain more than

one field, we aim to eliminate redundancy in our analysis. Specifically, if 𝑓𝑖𝑒𝑙𝑑𝐴

has already been identified as a primary key candidate, we do not consider any

multi-field candidate sets that include 𝑓𝑖𝑒𝑙𝑑𝐴. This is because any multi-field

candidate set that includes 𝑓𝑖𝑒𝑙𝑑𝐴 is guaranteed to be unique across all rows,

and does not convey any new information.

Optimization When picking the primary key candidates, it would be ideal to

consider all possible sets of fields of different cardinalities. However, because

analyzing all combinations of fields is computationally expensive, and it is most

common for primary keys to be from a set that contains one or two field names,

we limit our analysis to sets of size 1 and 2.

Step 2: Filtering the candidates. Once we have identified the possible primary

key candidate set, our goal is to identify the most likely primary key for the

table. We note that the uniqueness property is necessary but not sufficient.

38



For example, let us consider a field 𝑠𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒. It is likely that a field like

𝑠𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒 will be unique for all rows, especially if we are being precise to the

second. However, a field like 𝑠𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒 should not be used to uniquely identify

rows, because it is possible for two rows to have the same start time, even if the

current set of data does not present itself in this way. Human data scientists

can identify such situations by analyzing this field semantically.

As a result, in the second step of primary key detection, we identify unlikely

candidates and choose one candidate to be the table’s primary key. If there are

multiple primary key candidates, other candidates are favored over the unlikely

ones. To annotate the candidates that are unlikely, we use the following rules:

∙ Unlikely candidates include fields that are of type datetime or of subtype

float.

∙ Additionally, we favor length-one primary keys over primary keys of longer

length. For example, if we have two candidate primary keys, (user_id)

and (user_name, date_joined), we favor the most minimal candidate,

which is user_id.

If there are still multiple candidates after applying the above rules, we select

the first candidate in the list.

When a primary key for a table is determined, we also update the type of the

primary key field to id, if it was not already that type.

Algorithm 1 Primary Key Discovery
1: procedure GetCandidates
2: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑐𝑎𝑛𝑑𝑠← all length-1 and length-2 sets of field combinations
3: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡𝑠← []
4: for 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡 ∈ 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑐𝑎𝑛𝑑𝑠 do
5: if 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡 is unique across all rows then
6: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡𝑠← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡𝑠 ∪ {𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑠𝑒𝑡}

return FilterCandidates()

Related work: In our literature survey, we found that primary key detection has

often been done in the context of database normalization [4][9], which is a process of

39



removing redundancies by splitting one table into many. For example, if a table repre-

senting class assignments includes fields studentID and studentName, and every time

the studentID is different, the studentName is also different, that data is redundant;

only the studentID needs to be included in the assignments entry to identify the

student. The studentID → studentName mapping can be stored in another table.

To perform database normalization, the dependencies between fields (such as the one

between studentName and studentID) need to be determined first to identify redun-

dancies [10]. Hence when normalizing, the primary key is automatically detected,

because a primary key is a set of fields that all other fields depend on. Database nor-

malization is an expensive process, as it involves looking for dependencies between

all possible field combinations of all possible lengths.

In this thesis, we are focused on a different problem. We are given a set of files,

and assume each has a primary key of its own. Our goal is to identify those.

4.3 Relationship Discovery

Once the types of each column have been identified and the tables’ primary keys have

been identified, we can perform relationship discovery. We are identifying foreign

key-primary key (FK-PK) relationships, which are many-to-one relationships where

many entries of one table reference the primary key of another table. An example of

this is when many entries in a table called StoreVisits reference the same entry in

the Customers table, representing the many store visits of one specific customer. To

do so, we follow the general methodology of Rostin et al. [19], which we will detail

below.

As mentioned in Section 2.1.2, all valid foreign keys contain an inclusion depen-

dency. An inclusion dependency exists between two fields 𝑓1 of table 𝑡1 and 𝑓2 of

table 𝑡2, when 𝑡1 ̸= 𝑡2 and all of the values present in 𝑓1 are also present in 𝑓2. In

other words, the set of values in 𝑓1 is a subset of the set of values in 𝑓2. Furthermore,

in a foreign key reference, a field 𝑓1 must reference the primary key of another table.

However, not all inclusion dependencies that reference a primary key are valid foreign

40



keys; if a primary key field has a common set of values, for example [1,100], it is

likely that another field will contain a subset of those values, despite not having any

relation to that primary key field.

4.3.1 The Relationship Discovery Algorithm

The problem of identifying (FK-PK) relationships can be posited in the following

manner:

Given a set of tables, 𝑇𝑎𝑏𝑙𝑒1...𝑝 and fields associated with each given by 𝑓 1
1...𝑘 . . . 𝑓

𝑝
1...𝑘,

identify all pairs of (𝑓 𝑖
𝑗 , 𝑓

𝑙
𝑚) where

Like [19] we follow a two step methodology.

1. We first find all the candidate field pairs for (FK-PK) references based on in-

clusion dependencies.

2. We posit the selection of the valid foreign key reference as a learning problem

and use a machine learning model.

Our algorithm works as follows:

Step 1: Find all candidate pairs. To determine all the field pairs that are candi-

dates for being a foreign key reference, we make use of the inclusion dependency

property of foreign key references - while an inclusion dependency is not nec-

essarily a foreign key reference, all foreign key references necessarily contain an

inclusion dependency. Therefore, by finding all pairs of fields that contain an

inclusion dependency, we can narrow down the options for which field pairs can

contain foreign key references.

To find inclusion dependencies, we iterate through all the fields in a table and

compare those fields to the primary key fields of every other table. In a com-

parison, we find the set of values contained in a field, and see if it is a subset of

the values contained in the primary key field. If so, we mark that pair of fields

41



as an inclusion dependency. Finally, we pass that list of inclusion dependencies

to the next step.

Tolerating error: In an inclusion dependency, it is required that all of the

values in a foreign key field are contained in the corresponding primary key field.

However, this may not always be the case, as in cases where a value is incorrectly

entered into the foreign key field and does not correctly reference a primary key

field, or if the corresponding primary key field is deleted or perturbed. In our

algorithm, we chose to allow for a small threshold to account for small errors,

in which a pair of fields is actually a FK-PK reference, but one or two of the

FK values do not correctly reference a PK value.

To add a small tolerance for error when finding inclusion dependencies, we

instead check to see if the number of values in the FK field that are not present

in the PK field is less than 1
10

of the number of values in the FK field.

Our algorithm for finding candidate foreign key refernces differs from Rostin

et al. [19] in how we find inclusion dependencies and the addition of error

tolerance. The Data Civilizer system [8] also uses the method presented in

Rostin et a. [19], and presents a different method for tolerating error based on

string similarities of the field values.

Step 2: Filtering the Candidates. To determine which of the candidates are

valid foreign key-primary key pairs, we take a machine learning approach. For

this approach, we follow these steps:

1. Collect manually annotated training examples: Each dataset in the

training set contains manual annotations of all foreign key references within

that dataset.

2. Extract features: For each pair in the candidate set, we extract the

features presented in Rostin et al. [19]. These features are listed in Table

4.2. These features draw on observations of trends that occur in most

FK references. Specifically, we observe that foreign keys are not often

42



referenced by other foreign keys. Also, if the values in a field are contained

in many other fields, then it is more likely that this is a common set

of values, rather than a foreign key reference. On the other hand, it is

common for primary keys to be referenced by many foreign keys. Also, it

is common for the entries in a foreign key field to reference a large fraction

of the values in the corresponding primary key (not just a few).

These features also draw on semantic observations: for example, the names

of the FK and PK fields in a FK reference are often similar, if not the same.

Also, the foreign key field name is usually representing the ID of another

table, and as a result, often contains a substring denoting that.

3. Learn a classifier: As in type detection (Section 4.1.1), we use a decision

tree classifier that takes in features and learns a classifying model that

takes in inclusion dependencies and outputs "yes" or "no."

4. Validate our classifier: We partition our set of manually annotated

datasets into a test set and a training set. We train the model on the

training set and validate on the test set.

Learning a model in ADEL: To train a classifier, a user can call the a method

called train_fk_classifier, which extracts all candidate sets as described above,

as well as the label of each candidate pair from the manual annotations. We then use

these features and labels to train a sklearn decision tree.

Using the model in ADEL To discover the foreign key relationships that exist in

a dataset, a user can call the discover_relationships method. This method first

finds all candidate pairs, extracts the relevant features from these candidate pairs, and

then applies the previously-learned decision tree classifier on the extracted features.

The classifier outputs a Boolean value, which corresponds to whether or not a given

candidate set is a valid foreign key reference.

43



Relationship Detection Features
The number of unique values in 𝐹

The ratio of |𝑠(𝐹 )∩𝑠(𝑃 )|
|𝑠(𝐹 )| , where 𝑠(𝑋) represents the set of

values in field 𝑋.
How many times 𝐹 is referenced in all other inclusion
dependencies.
How many times 𝐹 is referencing other fields in other
inclusion dependencies.
How many times 𝑃 is referenced in all other inclusion
dependencies.
The name similarity between fields 𝐹 and 𝑃 .
The difference between average string length of values
in 𝐹 and values in 𝑃 .
The percentage of values in 𝑃 that are not within the
range of values in 𝐹 .
If the name of 𝐹 ends in a substring like ’id’ or ’key’.
The ratio of the number of rows in their respective ta-
bles.

Table 4.2: A list of features calculated by the foreign key classification algorithm,
as presented in Rostin et al. [19]. These features are extracted from an inclusion
dependency pair to determine if the inclusion dependency is a foreign key reference
or not. In this table, 𝐹 is the potential foreign key field and 𝑃 is the potential primary
key field.

44



Chapter 5

Constraint Discovery

In a dataset, a table may contain implicit constraints that the data must also fol-

low. These are arithmetic or logical relationships between the fields in the table.

Although they may not be explicitly stated anywhere in the dataset, they are usually

interpreted by human data scientists when processing or modeling the data. This is

the case when learning generative/graphical models for the data, as we mentioned in

Chapter ??. Graphical models are capable of capturing statistical correlations and de-

pendencies, but not implicit arithmetic/logical relationships. In most cases, a human

data scientist will look at the data and understand the fields based on the semantics,

the context, and the data values, and make some transformations to define random

variables for learning the graphical models. Our goal through constraint discovery

is to automatically identify these constraints to enable transformation of the original

field into a new random variable that can be fed into learning a generative model.

5.1 Motivation for discovering hard constraints

Statistical models are good for capturing general properties and distributions of data.

However, they are incapable of capturing certain relationships that necessarily take

place between and within rows. We define these relationships as ’hard constraints.’

One example of a hard constraint that is not captured by a statistical model is a

greater-than / less-than relationship. If Dataset A has a startTime column and an

45



endTime column, then for all rows, each startTime value is necessarily less than the

endTime value.

Often, we expect data samples from generative models to behave like the original

data. Any applications that use Dataset A (described above) would likely operate

under the valid assumption that startTime is always less than endTime. Having

a statistically generated data that sometimes violates this property would not be

desirable.

5.2 Discovering hard constraints

Hard constraints are largely only detected via examining semantics, and require some

knowledge of the dataset’s context. In the above example, we can infer from the

meaning of the column names startTime and endTime that one column represents

a start and the other represents an end, and that the end column will come after

the start. There are various types of hard constraints that are common in relational

datasets. The data generation system created by Houkjaer et al. allows users to

specify intra-row dependencies, like the example presented above, as well as intra-

column dependencies, which are dependencies within columns [11]. In this thesis, we

consider two types of intra-row hard constraints: logical and arithmetic.

In the following section, we propose an algorithm that discovers possible hard

constraints. In the resulting set of candidates, it is possible that there will be false

positives – identified hard constraints that do not make sense semantically, and do

not always hold.

5.2.1 Hard Constraint Discovery Algorithm

The hard constraint discovery problem can be specified as follows:

Given a table with fields 𝑓1 . . . 𝑓𝑘, identify all possible pairs or triplets of fields

𝑓𝑖, 𝑓𝑗 or 𝑓𝑖, 𝑓𝑗, 𝑓𝑘 that conform to one of the relationships from a predefined

relationship set 𝑅

46



In the first iteration of the hard constraints algorithm, our goal is to discover hard

constraints:

1. Involving two or three columns (a.k.a fields),

2. and pertaining to a relationship set 𝑅← {>,< .+,−}. That is, for columns 𝐴,

𝐵 and 𝐶, the possible cases are:

I. 𝐴 > 𝐵

II. 𝐴 < 𝐵

III. 𝐴 = 𝐵 + 𝐶

IV. 𝐴 = 𝐵 − 𝐶

Out of the possible column types, only datetime- and numerical-typed columns

are candidates for the specified hard constraints. As a pre-processing step, we first

identify the names of the columns for these two types, and store them in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝐷

and 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝑁 respectively.

Algorithm 2 Hard Constraint Discovery
1: procedure DiscoverHardConstraints
2: for 𝑐𝑜𝑙𝐴 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝑐𝑜𝑙𝐵 ∈ {𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠− 𝑐𝑜𝑙𝐴} do
3: if 𝑐𝑜𝑙𝐴 > 𝑐𝑜𝑙𝐵 then
4: 𝐺𝑇 ← 𝑇𝑟𝑢𝑒
5: else
6: if 𝑐𝑜𝑙𝐴 < 𝑐𝑜𝑙𝐵 then
7: 𝐿𝑇 ← 𝑇𝑟𝑢𝑒
8: for 𝑐𝑜𝑙𝐶 ∈ {𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠− 𝑐𝑜𝑙𝐴 − 𝑐𝑜𝑙𝐵} do
9: if 𝑐𝑜𝑙𝐴 = 𝑐𝑜𝑙𝐵 + 𝑐𝑜𝑙𝐶 then

10: 𝐸𝑄𝐴 ← 𝑇𝑟𝑢𝑒
11: else
12: if 𝑐𝑜𝑙𝐴 = 𝑐𝑜𝑙𝐵 − 𝑐𝑜𝑙𝐶 then
13: 𝐸𝑄𝐵 ← 𝑇𝑟𝑢𝑒

5.2.2 Simple optimizations

Redundancies: First, we notice that constraints II and IV are inverses of constraints

I and III, respectively. More explicitly, if we check constraint I (𝑐𝑜𝑙𝐴 > 𝑐𝑜𝑙𝐵) with

47



𝑐𝑜𝑙𝐴 = 𝑒𝑛𝑑𝑇 𝑖𝑚𝑒 and 𝑐𝑜𝑙𝐵 = 𝑠𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒, it is redundant to also check constraint II

(𝑐𝑜𝑙𝐴 < 𝑐𝑜𝑙𝐵) with 𝑐𝑜𝑙𝐴 = 𝑠𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒 and 𝑐𝑜𝑙𝐵 = 𝑒𝑛𝑑𝑇 𝑖𝑚𝑒, which would happen at

a later iteration. It follows that we can reduce the number of for-loop iterations to

only check the unique sets of column pairs.

Likewise, it is clear that we do not need to record the inverse constraints for

each pair of columns. Therefore, we can simplify the constraint checks to constraints

I and III. To eliminate unnecessary redundancies, we propose the following revised

algorithm. This optimization does not change the runtime analysis, but in practice

would reduce the runtime by a factor of 2, which is significant in the more common,

smaller cases. The updated list of possible hard constraints:

I. 𝐴 > 𝐵

II. 𝐴 = 𝐵 + 𝐶

Algorithm 3 Revised Hard Constraint Discovery
1: procedure DiscoverHardConstraints
2: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠← {}
3: for 𝑐𝑜𝑙𝐴 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝑐𝑜𝑙𝐵 ∈ {𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠− 𝑐𝑜𝑙𝐴 − 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠} do
4: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ 𝑐𝑜𝑙𝐴
5: if 𝑐𝑜𝑙𝐴 > 𝑐𝑜𝑙𝐵 then Record as hard constraint I, with colA = 𝑐𝑜𝑙𝐴 and

colB = 𝑐𝑜𝑙𝐵
6: else
7: if 𝑐𝑜𝑙𝐴 < 𝑐𝑜𝑙𝐵 then Record as hard constraint I, with colA = 𝑐𝑜𝑙𝐵 and

colB = 𝑐𝑜𝑙𝐴
8: for 𝑐𝑜𝑙𝐶 ∈ {𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠− 𝑐𝑜𝑙𝐴 − 𝑐𝑜𝑙𝐵} do
9: if 𝑐𝑜𝑙𝐴 = 𝑐𝑜𝑙𝐵 + 𝑐𝑜𝑙𝐶 then Record as hard constraint II, with colA =

𝑐𝑜𝑙𝐴, colB = 𝑐𝑜𝑙𝐵, colC = 𝑐𝑜𝑙𝐶
10: else
11: if 𝑐𝑜𝑙𝐴 = 𝑐𝑜𝑙𝐵 − 𝑐𝑜𝑙𝐶 then Record as hard constraint II, with colA

= 𝑐𝑜𝑙𝐵, colB = 𝑐𝑜𝑙𝐴, colC = 𝑐𝑜𝑙𝐶

5.3 Complexity Analysis

Let us denote the number of datetime columns as 𝑑 and the number of numerical

columns as 𝑛. In the search for hard constraints among the 𝑑 datetime columns, we

iterate through all 𝑑*(𝑑−1)
2

pairs of column candidates. For each pair, we do two 𝑂(1)-

48



Constraint Transformation
𝐴 > 𝐵 𝐴′ = 𝐴−𝐵

𝐴 = 𝐵 + 𝐶 remove 𝐴

Table 5.1: A summary of the discussed hard constraints and the corresponding trans-
formations.

complexity comparisons to check for constraints I and II. Then we iterate through the

𝑑− 2 remaining 𝑐𝑜𝑙𝐶 candidates to check for constraints III and IV. The complexity

for discovering hard constraints in the datetime columns is 𝑂(𝑑*(𝑑−1)*(𝑑−2)
2

) = 𝑂(𝑑3).

Checking for hard constraints among the 𝑛 numerical columns follows the same anal-

ysis, leaving us with an overall complexity of 𝑂(𝑑3 + 𝑛3) for the hard constraint

detection algorithm.

5.4 Transformations

For each of the hard constraints we have discovered, we now need to transform the

data such that we can create an equivalent random variable that a generative model

can use. Below, each hard constraint and its corresponding transformation is ex-

plained.

I. A > B

In this constraint, column 𝐴 is always greater than column 𝐵 within the same

row. With a statistical model, we might generate 𝐴-values that are greater than

𝐵-values with some small probability. To disallow this possibility, we can map the

original column 𝐵 to a 𝐴′ = 𝐴−𝐵. This way, we use a statistical model to generate

the positive differences between columns 𝐴 and 𝐵. At the end we recover column 𝐵

with 𝐵 = 𝐴+𝐵′.

II. A = B + C

In this constraint, column 𝐴 can be derived from columns 𝐵 and 𝐶. To preserve

this hard constraint, we only model columns 𝐵 and 𝐶 and repopulate column 𝐴 =

𝐵 + 𝐶 as a post-processing step.

49



50



Chapter 6

Testing Automated Discovery

In this chapter, we test each individual algorithm, as presented in Chapters 4 and 5,

for its ability to make the correct classifications. This involves two main steps:

1. Training classification models for type classification and relationship discovery.

2. Applying automatic detection to new datasets.

To train, test, and validate our approaches, we need datasets that are fully an-

notated. In other words, we require datasets for which we have fully populated and

verified meta.json files.

First, we describe the methodology for collecting manual annotations for valida-

tion, along with its challenges. While our current results are limited by the small

number of manual baselines available, we describe our plan to accumulate more man-

ual annotations, and introduce an systematic testing framework.

Within this chapter, we also describe our chosen datasets and the context of their

data. Finally, we describe the training and validation steps, along with results and

insights.

6.1 Collecting Manual Annotations

Every automated platform faces the challenge of finding or creating a baseline derived

from humans with which to compare the automated results. In their paper on ap-

51



plying a machine learning approach to foreign key discovery, Rostin et al. evaluated

their results on a total of six datasets, which they manually annotated themselves

[19]. By using one very large dataset, they were able to get a significant number of

training examples. However, the challenge of collecting a large number of manual

annotations in a scalable manner remains.

For this reason, we sought a small number of baseline meta.json files for compar-

ison. To complete the manual annotations that we do have, we hired a data scientist

named Carles Sala Cladellas. Cladellas’s job was to manually annotate the given set

of datasets that we present in Section 6.2.

For type detection, Cladellas created a script to calculate summary statistics over

each field, such as whether the field values were programmatic type ints, how many

unique values there were in a field, and the min and max lengths of the value strings.

His script then used those features to give a preliminary type assignment. After the

script completed, he went through and manually fixed type classifications that were

incorrect.

For primary key detection, he wrote a script that classified a field as being a

primary key if all of its entries were unique. At the end, he went through and

manually corrected any primary key errors, and manually added in any that were

missed.

For relationship and hard constraint discovery, Cladellas manually identified for-

eign keys and hard constraints, and manually populated the meta.json file.

Cladellas’s annotation process was not completely manual for type and primary

key detection, as he made use of aggregate properties of the data that were calculated

via a Python script. However, his method still captures the human intuition involved

in creating relationship schemas, as he manually checked all the information, and

made corrections when necessary. This manual checking applied his understanding

of the dataset and its contextual information to the resulting schema.

Cladellas’s method is also not completely automated, and differs from our ap-

proach in that the rules in his script were often curated for a specific dataset. His

script had hard-coded rules that were specific to the individual datasets – for example,

52



Dataset # Fields # Inclusion Deps # FK references # Tables
Biodegradability 17 3 5 5
Mutagenesis 14 3 3 3
Airbnb 49 3 3 4
Rossmann 27 7 2 2
Telstra 14 6 5 5

Table 6.1: Parameters of the datasets. The # Fields per dataset corresponds to the
number of type-classification examples that will be available for training and testing.
Similarly, the # Inclusion Dependencies tells us the number of relationship-discovery
examples that are available for training and testing for a certain dataset. The #
FK references corresponds to the number of positive training examples available for
relationship discovery. The # Tables corresponds to the number of primary key
identifications that will be made for a given dataset.

if the field name is startTime, then the datetime format is %Y-%m-%d. Additionally,

his script did not detect foreign key relationships or hard constraints.

We make use of Cladellas’s semi-manual annotations in our comparisons, and we

treat them as the baseline ’ground truth.’ Next, we will introduce the datasets for

which we have these manual baseline meta.json files.

6.2 Datasets

We collected a total of five relational datasets, three from Kaggle [13] and two from

an online dataset repository [15]. In Table 6.1, we provide a summary of the relevant

parameters for each dataset.

The number of fields tells us the number of training points per dataset that are

available for training the type-classification problem. Similarly, the number of inclu-

sion dependencies tells us how many training points per dataset are available for the

foreign key classification problem, and the number of foreign key references tells us

the number of positive examples in a dataset. The number of tables tells us how

many primary keys will be determined for each dataset.

53



Figure 6-1: A summary of the Airbnb dataset types and relationships.

6.2.1 Schema Overview

Next, we will give a brief overview of each dataset.

Airbnb

The Airbnb dataset comes from a data prediction competition on Kaggle [3]. The

schema is summarized in Figure 6-1. Each entry in the Users table represents an

account on the Airbnb platform, and each entry in Sessions represents a log of web

access by a certain user. The Countries table holds information about different

countries, and is referenced by the country_destination field in the Users table,

detailing which countries users booked stays in. The age_gender_bkts table provides

demographic information about users traveling to the referenced countries.

Rossmann

The Rossmann dataset is another dataset from Kaggle, presented in a competition

for Rossmann Store Sales [18]. The schema is summarized in Figure 6-2, and repre-

54



Figure 6-2: A summary of the Rossmann dataset types and relationships.

sents a log of sale information for the Rossmann franchise. The Store table represents

a store in the Rossmann franchise, and the entries in the Train table represent a day

in a specific store.

Telstra

The Telstra dataset is the third Kaggle dataset [16]. It is summarized in Figure

6-3 and represents the severity of different types of mobile phone network outages in

areas serviced by the Telstra company.

Biodegradability

The Biodegradability dataset is from an online relational database repository [5].

Its schema is summarized in Figure 6-4. The dataset conveys information about

different molecules and their atomic makeup. Atoms can also be a part of different

bonds and atom groups.

Mutagenesis

The Mutagenesis dataset is also from an online relational database repository [7],

and its schema is summarized in Figure 6-5. This dataset conveys the same type

of information as in the Biodegradability dataset; molecules are made up of atoms,

which can also be involved in different bonds.

55



Figure 6-3: A summary of the Telstra dataset types and relationships.

Figure 6-4: A summary of the Biodegradability dataset types and relationships.

Figure 6-5: A summary of the Mutagenesis dataset types and relationships.

56



6.3 Methods

Ultimately, the Automatic Data Element Linking system is meant to be run end-to-

end, filling in all the information necessary to build a relational schema. However,

in order to evaluate the performance of individual algorithms, we looked at each in

isolation, and derived separate metrics for the different algorithms’ success. In this

section, we describe the methods used to train and validate the different algorithms.

6.3.1 Training

Training applies to two out of the four algorithms - type detection and relationship

discovery. For these two algorithms, part of the algorithm involves applying a decision

tree classifier that has been trained on a subset of the dataset. Ideally, the training

set contains approximately half (or fewer) of the available data points, and includes

a variety of example types.

Type Detection

In type detection, we want to choose a set of datasets that:

1. Has enough datapoints.

2. Contains examples of classifications for all 4 different types (id, number, date-

time, categorical).

From the summary in Table 6.1, we see that the Airbnb dataset has 49 fields, which

is around half of the total number of fields across all five datasets. Additionally, from

Airbnb’s schema summary in Figure 6-1, we can see that the Airbnb dataset encom-

passes all the different types. Furthermore, certain types, such as Number, contain

examples of different subtypes within them. In the Users table, we see that age is a

Number with subtype Integer. On the other hand, a field like lng\_destination in

the Countries table, which represents longitude, would be a Number with subtype

Float. Similarly, the Airbnb dataset also contains many Categorical fields, some of

which are Boolean (age) and others which are not (language).

The number of fields in the Airbnb dataset, as well as the variety of types and

57



subtypes included in these fields, make it a good candidate for training a type classi-

fier.

Relationship Discovery

While discovering relationships, we have a more limited training set, as each dataset

includes relatively few inclusion dependencies and foreign key relationships. We train

this classifier on the inclusion dependencies: an inclusion dependency tells us if a

certain column’s values are a subset of (included in) the set of values of another

table’s primary key.

The best dataset to include in this training set is Rossman, as it has seven inclusion

dependencies, and therefore seven training points, only two of which are actual foreign

key references. In most of the other datasets, all of the detected inclusion dependencies

are also foreign key references, so they only provide positive examples. Rossman

gives us a good baseline for which kinds of inclusion dependencies are not foreign key

references.

For example, there is an inclusion dependency that is not a foreign key between

the DayOfWeek field in the Train table and the Store field in the Store table (Figure

6-2). This is because integers are used to represent both of these fields; the DayOfWeek

column uses integers [1,7], which is a subset of [1,1115], the integers used to identify

stores. However, this inclusion dependency is merely coincidental and not meaningful,

because the set of values [1,7] is very common.

To complete the training set for relationship detection, we also include the Airbnb

dataset. This provides three more positive examples for a more balanced training set.

6.3.2 Testing

To evaluate the performance of individual algorithms, we created a testing suite that

takes as an input the path to the directory containing a the files corresponding to

a dataset. We expect this dataset to contain a manually annotated meta.json file,

which we treat as the ground truth for our generated meta.json files. The purpose

of the test suite is to take the path to the dataset directory as the only input, and

58



Manual
Meta.json

Type Detection
? ? ?

? ? ?

? ? ?

Compare

Compare

Compare

PK Detection

Relationship
Discovery

Figure 6-6: This figure depicts the automated testing suite for evaluating type detec-
tion, primary key detection, and relationship discovery. Each testing module takes
in a partially-filled file of annotations to feed into each respective algorithm. The
output is then compared with the original manual annotations file.

59



automatically validate all four algorithms, writing important metrics to csv files as

output. Once a repository of manually-annotated datasets has been collected, we can

pass this list into the test suite and collect more general aggregate results.

We also note that there exist some dependencies between algorithms. Misclassi-

fications in one algorithm could have an effect on the accuracy of the classifications

of a later algorithm. For each algorithm, we assume that all the information that

precedes it in the Automatic Data Element Linking flow is correctly identified. For

example, this means that when testing Relationship Detection, we assume that the

types, subtypes, and primary keys have all been correctly identified. As a result, we

only evaluate the work done by the algorithm at hand.

To provide this modularity in testing, the test suite automatically creates partially-

filled meta.json files, which contain only a subset of the ’ground truth’ information.

We generate four different partially-filled ’ground truth’ meta.json files, one each for

input into the four different modules. The input meta.json file for type detection

assumes that the overall dataset structure is filled in, including the table names,

the field names, and the number of rows; the input meta.json file for primary key

detection has all of its field types and subtypes populated, and so on. The API for

accessing the test suite is explained in further detail in Appendix B.

6.4 Results

6.4.1 Type Detection

From the results in Table 6.2, the most mistakes in type classification involve fields

labeled id and number being classified as something else. The id fields were mistak-

enly classified as either number or categorical. However, id misclassifications aren’t

very concerning, as most of these ids are primary keys or foreign keys, and will be

identified in the following algorithms; when a field is identified as a primary key or

a foreign key, the type is updated to id. The number fields that were misclassified

were all incorrectly labeled as categorical. This misclassification occurred even in the

60



Dataset id number datetime categorical
Airbnb 1/6 1/8 1/7 0/28
Rossman 3/4 2/5 0/2 0/16
Telstra 0/6 0/1 0/0 0/7
Biodegradability 0/8 0/6 0/0 0/3
Mutagenesis 0/5 0/3 0/0 0/6

Table 6.2: Type misclassifications for each dataset, broken down by type. The values
for each column show the ratio of the number of fields that should have been classified
as the type indicated, but were instead classified as something else, over the total
number of fields of that type.

Airbnb dataset, which was part of the training set. The reason this is such an easy

misclassification is because integers, such as [1-10], are commonly used to represent

different categories. Also, sometimes it is objectively unclear, even through human

intuition, whether to classify a field as an integer or as categorical.

We see the case of numerical fields misclassified as categorical in the Rossman

dataset. An example of this is with CompetitionOpenSinceYear, which represents

the year a specific competitor opened up. The year is an integer, but there is a

relatively small set of year options included in the dataset, as most of the competi-

tor stores opened in the years 2000 - 2016. Furthermore, there is another field,

CompetitorOpenSinceMonth, that represents the month in which the competitor

store opened. It would be intuitive to classify the set of integers representing months

as categorical, since there are only 12 months and the value of this field is one of 12

options. Because there is a fine line between number and categorical when it comes

to integers that represent categories, the type-classification decision tree seems to

misclassify this case the most often.

Semantic features, such as a column name containing the substring ’date’ or ’time,’

seem to be very powerful, as most datetime fields had some variation of those sub-

strings and were classified correctly. Additionally, most id fields containing the sub-

string ’_id’ were also classified correctly, despite confusion occurring for other, not

obviously-named, id fields.

61



Dataset # False positives
Airbnb 0/4
Rossman 0/2
Telstra 1/5
Biodegradability 0/5
Mutagenesis 0/3

Table 6.3: Primary key results: False positives for each dataset - the number of fields
that were not primary keys, but were classified as primary keys, over the total number
of primary keys.

Dataset Missed FKs
Airbnb 0/3
Rossman 0/2
Telstra 0/5
Biodegradability 3/5
Mutagenesis 0/3

Table 6.4: Foreign key relationship results: The number of missed foreign keys over
the total number of foreign keys per dataset.

6.4.2 Primary Key Detection

The results for primary key detection are shown in Table 6.3. All of the manually-

identified primary keys were correctly classified as primary keys. We saw one false

positive in the Telstra dataset, where a field that was not labeled as a primary

key was classified as a primary key. Specifically, this was the id field of the train

table. In this case, the train table did not have a labeled primary key, as it is not

a mandatory label. The primary key id identified by the algorithm is still a valid

primary key, despite not being labeled as one. Overall, the primary key algorithm

performed very well.

6.4.3 Relationship Discovery

Looking at the relationship discovery results in Table 6.4, the only dataset that con-

tained missed foreign keys was Biodegradability. This dataset has a total of five

foreign key relationships. However, only three inclusion dependencies, and therefore

62



three candidates for relationships, were found; for the two foreign keys contained in

the gMember table, valid inclusion dependencies were not found. In the atom_id for-

eign key of the gMember table, there were 72 values present in the foreign key column

of the gMember that were not present in the primary key column of the Atom group.

For the group_id foreign key, there were 863 values present in the foreign key col-

umn of the gMember group that were not present in the primary key column of the

Atom group. Such a large number of discrepancies means that a significant number of

gMember entries were not referencing valid Atoms or valid Groups, and that perhaps

those data entries are invalid. Our foreign key detection algorithm builds in a small

tolerance for error, so it would accept if a small fraction (< 1/10) of the values were

mismatched, but such a large error is not tolerated.

The three remaining foreign keys in Biodegradability were classified as inclusion

dependencies, and therefore became candidates for a foreign key relationship. How-

ever, the decision tree classifier incorrectly classified one of the inclusion dependencies

(the atom_id in the Bond table) as not a foreign key. Interestingly enough, there is

another field in the Bond table that is very similar to atom_id – atom_id2, repre-

senting the second atom in the bond – and that column was correctly classified as a

foreign key. One possible explanation is that one of the features in the decision tree

classifier expects that the values in a foreign key field cover the majority of the values

in the corresponding primary key field. While that assumption is true for atom_id2,

which covers 95.2% of the primary key values, the atom_id field only covers 45.7%,

making it a less likely target for a foreign key. There are other features – such as

one that assumes the more times a field is referenced, the more likely it is to be a

primary key in a foreign key relationship – that would categorize the atom_id as a

likely foreign key relationship. However, we did not train on examples that activated

those specific features, so the decision tree likely does not rely on that feature very

much.

Given that the misclassification of atom_id is the only true error in the relationship

discovery phase, the overall accuracy is relatively high. Moving forward, we will train

on more datasets, which will allow the decision tree to consider other features more

63



heavily, creating a more balanced classifier.

6.5 Towards Improving Our Learning Algorithms

Looking forward, our goal is to accumulate a larger number of manually-annotated

meta.json files to improve our classifiers and obtain more general results.

To this end, we are in the process of creating a platform that will collect manual

annotations on different levels. Some manual annotations will be based on table

and field names alone (and perhaps a written description of the dataset), to see how

annotators perform based on purely semantic and contextual information. Other

manual annotations will be collected by showing annotators both contextual/semantic

information and raw data values. The proposed interface and design for this platform

is outlined in Appendix C.

We will make this platform available on Mechanical Turk, and crowdsource the

annotations to create a repository of manual baseline annotations. The annotation

collection will be a continuous process, and once a dataset has a complete set of an-

notations, we will feed the manual meta.json file directly into our testing framework

to generate feedback for our algorithms.

64



Chapter 7

Towards Automating Data Science

Endeavors

In this chapter, we demonstrate the Automatic Data Element Linking’s contribution

to a fully automated data science process. Specifically, we take the schema generated

from Automatic Data Element Linking and feed it into two endpoints: Deep Feature

Synthesis and the Synthetic Data Vault. This section will accomplish two things:

1. Show that the information identified in Automatic Data Element Linking is

sufficient for existing platforms that take in human-structured datasets and

metadata.

2. Evaluate the impact of the information extracted by Automatic Data Element

Linking on the performance of these platforms.

7.1 Motivating Examples

Imagine a data scientist who is looking to develop features for the Airbnb dataset laid

out in Figure 6-1. She would likely notice that many different entries in the Sessions

table correspond to the same User. As a result, she would use information about a

session entry’s corresponding user entry when creating a feature for fields in the

Sessions table. Additionally, if she were creating a feature for the action_type in

Sessions, she would note that different values represent different types of actions that

65



the user took during a particular session. She would then make use of the knowledge

that action_type is categorical in order to create features for action_type, perhaps

using a conditional distribution that depends on which action type category an entry

falls into. In this data science problem of creating informed features, a data scientist

makes use of the two important pieces of information captured by the Automatic

Data Element Linking process - types and foreign keys.

Now, imagine the same data scientist wants to create a generative model of a table

of class times for her university. She hasn’t looked at all the entries in the table yet,

but she knows that the startTime field must necessarily come before the endTime,

as classes must start before they can end. To make her generative model accurate,

she creates a new random variable, calculated by endTime - startTime. Instead of

sampling from a generative model of endTime and potentially getting endTime values

that are before the corresponding startTime value, she models this new random vari-

able that represents the duration of the class. In the end, she transforms the duration

back to endTime by adding it to startTime. In this generative modeling problem,

a data scientist identifies the same hard constraint information that is identified in

Automatic Data Element Linking. Although she does not make it explicit, she uses

her contextual understanding of the problem to decide what variables to model.

As we have shown in the above examples, the information extracted by Automatic

Data Element Linking is analogous to the information understood by data scientists

when they approach data with implicit and explicit relations. To illustrate this point

in the setting of automated processes, we will feed our results into two endpoints. The

two platforms we will use as endpoints are Deep Feature Synthesis [14], an algorithm

that automatically generates features for a given relational dataset, and Synthetic

Data Vault [17], a system that creates a generative model of a relational dataset for

the purposes of creating synthetic data. Both Deep Feature Synthesis and Synthetic

Data Vault already aim to automate their respective parts of the data science process.

By allowing for the automation of relational schema generation, Automatic Data

Element Linking would allow these platforms to begin from raw data, extending this

automation even further than before.

66



7.2 Deep Feature Synthesis

Deep Feature Synthesis (DFS) is an algorithm that utilizes the relationships between

fields to automatically generate features for data prediction problems [14].

7.2.1 Connecting the Pieces

The DFS algorithm calculates two types of features: entity features and relational

features. Entity-level features are calculated based on some transformation of the

original data. These transformations depend on the field type, which can be nu-

meric, categorical, timestamp, or freetext in DFS. The field type determines which

transformations and functions can be applied to the values of that field, and, as a

result, what entity features are discovered.

Relational features are derived by analyzing relationships between entities. DFS

utilizes knowledge of data dependency and makes use of information about the parent

entity to create features about the children [14].

As a result, DFS relies heavily on knowing the higher-level field types, as well as

the foreign key relationships between fields. The Automatic Data Element Linking

algorithms create a meta.json file that contains those same pieces of information.

By feeding the pieces of information extracted by Automatic Data Element Linking

into DFS, we can automate the feature discovery process beginning with the raw data

stage. This removes the reliance on human intuition to understand and annotate a

dataset and its relationships.

7.2.2 Experiment

In order to feed the meta.json file into DFS, Max Kanter created a script to translate

the ontology of our meta.json into that of DFS. This script only needed to convert

certain vocabulary and structure, as the information required by DFS is the same.

Because DFS needs a prediction problem in order to evaluate its features, we used

the Kaggle predictive problems from the three Kaggle datasets in Section 6.2, which

are summarized in Table 7.1. In these predictive problems, one specific field of one of

67



Dataset Entity to predict Table of entity
Airbnb country_destination Users
Rossman Sales Train
Telstra fault_severity Train
Biodegradability logp Molecule
Mutagenesis mutagenic Molecule

Table 7.1: The prediction problem for each of these datasets is to predict the value
of the specified field, which is part of the listed table.

the dataset’s tables is chosen to be to predicted. To create a training dataset and a

testing dataset, we split the given tables, and used k-folding cross-validation to create

a model. For each of the datasets, the experiment went as follows:

1. Convert the respective meta.json, and feed it into DFS, along with the corre-

sponding prediction problem.

2. Use DFS to generate features.

3. Evaluate the predictive accuracies of those features on the test set.

We repeat this above process twice, once with the meta.json generated from

Automatic Data Element Linking, and once with the manually-annotated "ground

truth" meta.json.

7.2.3 Results

In Section 6.4, we saw that the different datasets’ meta.json files contained different

results. Some had types that were misclassified, while others had relationships that

were missed. Because of this variation, we can analyze how these misclassifications

and false positives affected the feature generation process, and gain insight into which

algorithm (type classification, primary keys, relationship detection) had the most

impact on the generated features.

The predictive accuracy results are presented in Table 7.2, and we can use these

to evaluate the effectiveness of the features that resulted from a given meta.json file.

In our results, we see that the generated meta.json files resulted in comparable or

even better performance, except for in the case of Biodegradability. In Section 6.4.3,

68



Dataset Control Predictive Accuracy ADEL Predictive Accuracy
Airbnb 0.8124 0.8124
Rossman 0.6115 0.6117
Telstra 0.5695 0.6007
Biodegradability 0.3015 0.2470
Mutagenesis 0.7587 0.7878

Table 7.2: The predictive accuracy results of the control and the Automatic Data
Element Linking (ADEL) -generated schema for each dataset.

we saw that Biodegradability was the only dataset to have foreign key references

that were not found. Specifically, three out of the five existing foreign keys were not

identified. This correlation of missed foreign key references and a lower prediction

accuracy suggests that the identification of foreign key references is important for

feature discovery. The misclassification of a few types, specifically when number

fields are misclassified as categorical has less of a noticeable impact.

7.3 Synthetic Data Vault

The Synthetic Data Vault is a system that creates a generative model of a relational

database using a multivariate modeling algorithm. This model can then be used

to generate synthetic data, which is data that upholds the underlying mathematical

properties present in the original data [17]. The generated model can also be made

available to people who do not have access to the original data, essentially allowing

outside parties work on the dataset without compromising any privacy issues that

may arise from sharing the original dataset.

7.3.1 Connecting the Pieces

From an automation standpoint, the Synthetic Data Vault (SDV) is completely au-

tonomous, and involves no user intervention when learning the generative model from

an existing schema. The user can then interact with SDV through its API endpoints.

For example, a user can request to synthesize data for a specific table.

69



However, SDV takes in a schema file in order to properly model each field [17].

More specifically, each field’s type determines which kinds of models can be applied

to that field. The foreign key relationships between fields, which also represent data

dependencies, inform parts of the multivariate algorithm; the distribution of parent

fields often depend on the distribution of values in their children. The schema file is

integral to SDV, and incorrect types or relationships would result in incorrect models

and unusable synthetic data.

Creating the schema file requires the user to completely understand and annotate

the dataset. This task becomes more and more arduous the more fields and tables

there are. With the Automatic Data Element Linking algorithms, a user can take a

folder of csv files and automatically generate synthetic data from there, instead of first

taking the time to understand all the fields and identify potential references between

tables. The Automatic Data Element Linking algorithms create a schema file which

feeds directly into SDV, giving the user control over the process while also relieving

them of the tasks of understanding how a dataset is structured and annotating it.

7.3.2 Hard Constraints

Because the Synthetic Data Vault relies entirely on generative modeling, there are

some constraints that the SDV does not enforce, including hard constraints. For ex-

ample, imagine there is table of Classes with a field startTime and a field endTime.

There is an implicit constraint, satisfied by "real" data, that the endTime is always

after the startTime. While the SDV’s generative modeling is unlikely to produce

endTime values that before than the corresponding startTime in an entry, there is

no guarantee that a violation will not be produced. Those violations are important,

because applications using SDV would be expected to be able to interact with syn-

thetic data in the same way they would interact with real data. Therefore, if they

were relying on the assumption that endTime > startTime, this should also hold

with the synthetic data.

As the Automatic Data Element Linking process detects hard constraints, we

thought to also integrate hard constraint enforcement into the SDV workflow. To

70



Figure 7-1: The Employees dataset, used for analyzing hard constraints.

accomplish this, we applied follow this procedure:

1. Before SDV reads in the data, the user calls apply_pre_transform on the

dataset’s meta.json file. This transform function will, for each table that has

hard constraints, apply the corresponding transformation on the relevant fields.

SDV will read in the transformed data and variables. This is where endTime

would be mapped to endTime - startTime.

2. The user then uses SDV to generate models and synthesize data. SDV generates

synthetic data in the transformed variables. In our example, SDV would model

the difference between endTime and startTime (a duration) instead of endTime.

3. Before SDV returns any data, it calls apply_post_transform to apply the

inverse transformation. As a result, the returned data that the user sees is data

that corresponds to the original fields.

7.3.3 Experiment

We applied this modified SDV to a subset of an Employee dataset from the online

relational dataset repository [6]. In this dataset, which is summarized in Figure 7-1,

there is an Employees table and a Salaries table. In the Salaries table, each entry

represents a salary of an employee from a certain from_date to a certain to_date.

The hard constraint 𝐴 > 𝐵 exists between the to_date and from_date fields.

71



% Violation
Enforced HC 0
Control 30.6

Table 7.3: SDV Results: The percentage of violations in SDV-generated synthetic
data, with the hard constraints enforcement and without.

First, we run Automatic Data Element Linking to fill the meta.json file, which

contains the hard constraint. Then, the augmented SDV flow pre-processes the

raw data according to any hard constraints. Our control is the manually-annotated

meta.json, with no hard constraints.

The experiment:

1. Instantiate a new SDV model using respective meta.json files.

2. Use the SDV model to synthesize 100 new Employees rows, and then synthesize

500 Salaries entries.

3. Calculate the percentage of violations = 100 × # times hard constraint is

violated / # total synthetic entries in Salaries.

7.3.4 Results

With the normal SDV generative modeling and the control meta.json annotations,

the percentage of hard constraint violations is 30.6% (153 violations out of the 500

generated rows). Using the meta.json file generated from Automatic Data Element

Linking, which does consider hard constraints, the percentage of violations drops to

0%.

72



Chapter 8

Conclusion and Future Work

8.1 Future Work

Moving forward, we are looking to expand the repository of datasets and correspond-

ing manual annotations we have available for testing and validation. This will allow

us to gain insight into the generalizability of our algorithms, and allow us to iterate

on the existing modules. Additionally, once we have a larger repository of datasets

to pull from, the training of our machine learning classification models will become

more accurate. In the future, if we have a large enough dataset to select the training

set from, we can either arbitrarily select or implement methods like k-folding.

In addition to expanding our repository of datasets and manual annotations, we

are also looking to scrape datasets off of websites known to host datasets, such as

Kaggle. We have an initial prototype of a process that automatically visits websites

every day to check for new datasets. This script must:

1. Determine if datasets are relational and multi-table.

2. Determine what kind of learning problem is being asked (if part of a competition

like Kaggle). This can be prediction, natural language processing, or vision.

3. If a prediction problem, determine what entity is being predicted.

4. Download and structure data files in a standardized manner.

With this information, we can not only collect statistics on metrics regarding

73



misclassifications, but we can continue the work done in Section 7.2, and evaluate the

performance of predictions generated from automatically generated schemas.

8.2 Conclusion

In this thesis, we have presented a system to emulate human intuition in the under-

standing of relational datasets. We have broken down and formalized this intuition

into four main steps, and have created algorithms for each one. In the end, we demon-

strate the contribution of our platform by linking it to existing systems, taking one

step closer to a fully automated data science process.

74



Appendix A

Synthetic Data Vault

The Synthetic Data Vault (SDV) is a system that automatically generates synthetic

data for relational databases by creating a generative mode from the raw data, and

then sampling from that model. The goal of SDV is to facilitate data science endeav-

ors, specifically those that require access to a large amount of potentially sensitive

data. SDV produces data that doesn’t reveal any sensitivities of the original data,

but still captures the mathematical relationships present in the original context [17].

A.1 Overview

In the Synthetic Data Vault, the user must first collect and format the relational

dataset into a collection of tables in which each table entry is atomic. Then, the user

specifies the structure of the provided dataset, providing information about the type

and constraints of the data in each table, as well as the relationships between tables.

The format and the information required by the SDV is contained in a json file called

meta.json, which is outlined in detail in Section 3.1. Then, the SDV learns a model

of the raw data, and samples from the model to synthesize data [17].

In this section, we describe the feedback collected on the original SDV API, and

the implemented changes to make SDV more usable.

75



Figure A-1: The SDV workflow.

A.2 SDV API

To access the SDV functionality, the user first imports the database package from the

SyntheticDataVault code repository. By instantiating a new Database object, the

user loads the metadata file and generates the underlying model. ’meta.json’ is the

metadata file and ’summary.json’ is where the model parameters will be written to,

if the model has not yet been created, or where the model paramters will be read

from, if the model already exists.

from database import Database

db = Database(’meta.json’, ’summary.db’)

Then, the user gets a handle on the table for which they want to create synthetic

data, synthesizes the desired number of rows, and then samples the data to keep the

same number of rows that existed in the raw data.

users = db.get_table(’users’)

for N iterations:

users.synth_row()

users.sample_synth_data()

To synthesize tables that have a foreign key into the users table, we would call

users.synth_children.

In summary, the main entry points into the SDV API are

76



1. database = Database(’meta.json’, ’model_parameters.db’)

2. table = database.get_table(’table_name’)

3. table.synth_row(...)

4. table.synth_children(...)

A.3 API Feedback

After collecting feedback from both computer scientists and statisticians, we received

comments in four main areas.

First, the interface is not transparent enough; it is not obvious what the code is

doing after each command. For example, instantiating a database object will also

read in the metadata and create the model for the dataset, which is not obvious from

the command name.

Second, the API entry points may be intuitive from a computer science viewpoint,

but not from a statistician’s. A statistician or data scientist is used to working with

dataframe objects, and handling this new Database object is unfamiliar. A data

scientist would need to be able to easily view how the data is being processed, as well

as what data is being generated.

Third, the SDV still requires users to know the overall structure of the dataset.

For example, imagine a dataset with two tables, users and sessions. The sessions

table has entries of a web browsing session for a specific user and has a column called

user_id. This user_id of the sessions table is a foreign key into the id column

in the users table. In order to generate synthetic data for the sessions table, we

must call |users.synth_children|, as sessions is a child table of users. However,

it is unreasonable to expect everyone using SDV to know the exact structure of the

underlying dataset to generate synthetic data.

Finally, the existing SDV code still requires the original raw dataset to be read in.

However, this undermines the goal of SDV to provide users with the ability to reveal

synthetic data without compromising the potentially sensitive original data.

77



A.4 API Enhancements

In our API Enhancements, we addressed each of the issues raised in the SDV Feed-

back.

To make the API interface more transparent and intuitive for a data science use

case, we decided to view the code module as a SDV black box. This black box would

have very high-level buttons that a user could push, and would return outputs in

formats that are familiar to a data scientist, such as dataframe objects. Specifically,

this meant packaging all functions into a SDV module, and adding high level steps to

load the metadata, build the model, synthesize data, and view / write out the data.

Our second focus was removing reliance on the original dataset. Users can now

synthesize data directly on any desired table, without having to call synth\_children

on any parent table; instead, all of the dependencies are taken care of behind the

scenes. Furthermore, all reliance on the raw data values are removed – now users can

generate a model from the raw data, and pass that model around without sharing

the original data.

The API now consists of the following main entry points:

1. dataVault = SDV(’meta.json’)

2. dataVault.learn_model(’model_parameters.db’)

3. dataframe = dataVault.synth_rows(’table_name’, number_rows)

4. dataframe = dataVault.synth_table(’table_name’)

5. dataframe = dataVault.get_synth_data(’table_name’)

6. dataframe = dataVault.get_model_params()

With these API changes, the SDV codebase aims to be more intuitive and better

suited for its use cases.

78



Appendix B

ADEL API

In this chapter, we outline the main API endpoints necessary for training, classifying,

and validating results.

B.1 Training

For the algorithms that rely on a machine learning classifier, we provide methods for

training a decision tree on user-specified datasets. This applies to decision trees for

both type detection and relationship detection.

∙ train_type_decision_tree: Takes in a list of manually-annotated (correct)

meta.json files. Trains a type-classification decision tree on the corresponding

datasets.

∙ train_ref_decision_tree: Takes in a list of manually-annotated meta.json

files. Trains a decision tree that determines whether or not an inclusion depen-

dency is a foreign key relationship.

B.2 Schema Generation

Once we have the necessary classifiers, we can call the following functions to incre-

mentally generate meta.json files for the desired datasets. All of these functions

79



assume that the meta.json file is in the same directory as the dataset csv files.

∙ classify_field_types: Given an empty meta.json file for a specific directory,

extracts relevant features and detects the type and subtype of each field for each

table. Writes to the user-specified output file, so the user can either overwrite

the old meta.json file or create a new one.

∙ find_PKs: Given a meta.json file with types and subtypes filled in, finds the

most likely primary key for each table in the corresponding dataset. Writes

updated metadata to the user-specified output file.

∙ discover_relationships: Given a meta.json file with types and PKs filled

in, finds all inclusion dependencies and classifies each candidate pair as a FK

reference or not. Updates metadata with detected foreign key references and

writes the updated metadata to the user-specified output file.

∙ discover_hard_constraints: Given a meta.json file, finds if any of the pre-

specified hard constraints hold within any of the dataset’s tables. Updates

metadata with detected hard constraints, and writes updated metadata to the

user-specified output file.

B.2.1 Hard Constraint Transformations

After hard constraints have been detected, we apply a transformation to the dataset

to ensure that the constraints are satisfied during whatever analysis or manipulation

that follows. We also provide a post-processing step that transforms the dataset back

to its original fields.

∙ apply_pre_transform: Given a meta.json file for a specific directory, reads

the specified hard constraints and transforms the relevant datatables. Creates

new tables with the suffix ’.trans.csv’

∙ apply_post_transform: Given a meta.json file for a specific directory, reads

the specified hard constraints and transforms the relevant synthetic data. Over-

writes the synthesized data csv file with the transformed data.

80



B.3 Testing and Validation

B.3.1 Isolating Modules

The API for generating a complete meta.json file was written so that a user can

call only the desired modules to fill in incomplete information. For example, if all

the field types are known, we can move onto detecting primary keys. To test the

accuracies of individual modules, we can also employ this technique, and generate

different input files with different amounts of incomplete information to pass into the

respective methods.

∙ gen_empty_metas: Generate an ’empty’ meta.json file that has contains

all the obvious information – desired format, all the table and field names, as

well as number of rows and number of unique values.

∙ create_input_for_PK: Generate a meta.json file that contains all field

types and subtypes, in addition to the obvious information.

∙ create_input_for_rel: Generate a meta.json file that contains all field

types and subtypes, primary keys for all tables, and all the obvious information.

∙ create_input_for_HC: Generate a meta.json file that contains all field

types and subtypes, primary keys for all tables, relationships between all tables,

and all of the obvious information.

B.4 Generating Results

Next, we describe the methods used to gather insight on the accuracies of the above

methods.

∙ compare_types: Given a baseline meta.json file and a generated meta.json

file, calculate number of incorrectly classified types, break down the number per

type.

81



∙ compare_PKs: Given a baseline meta.json file and a generated meta.json

file, calculate the number of incorrectly identified primary keys, and break it

down per type.

∙ compare_refs: Given a baseline meta.json file and a generated meta.json

file, calculate the number of incorrectly identified foreign key relationships, and

break it down into false positives and false negatives.

∙ compare_HCs: Given a baseline meta.json file and a generated meta.json

file, calculate the number of incorrectly identified hard constrains, and break it

down into false positives and false negatives..

82



Appendix C

Collecting manual annotations for

data

The goal of this web application is to collect annotations on a dataset. A dataset

consists of one or more tables, each of which is represented by a csv file. The input

to the system will be a folder of csv files, where each csv file represents a table. Each

table will have many columns of data, with each column representing a field in a

table. The annotations we want to collect are:

1. The types of each column in a table (id, datetime, number, categorical, or text).

2. The primary key of each table (one per table).

3. The foreign key relationships between tables (from one column of a table to a

column in a different table).

4. Hard constraints within a table (field_A > field_B).

C.1 Type Classification

Here, we will ask a user to annotate types, with the UI shown in Figure C-1. The view

will display information for one table. For each column in the table, we will display

the column name, as well as the first 10 entries in that column to let the user preview

the data. At the bottom of each column, there is a dropdown menu populated with

the five types (id, number, datetime, categorical, text). There is a horizontal scroll in

83



Figure C-1: UI to collect annotations for a table’s types.

type_annotation_id timestamp dataset table field chosen_type

Table C.1: The information that should be captured in a "type_classification"
database when an annotation is submitted.

case all of the columns do not fit across the width of the screen.

The user must select types for all columns before they can submit.

On the top right, there is an “Instructions" link that opens up a popover or pop

up that displays an explanation of what types are and how to complete the task.

When the user clicks submit, we want the information in Table C.1 to be entered

into a type_classification database.

∙ type_annotation_id : ID of the database entry

∙ timestamp: time the user submitted

∙ dataset: name of the directory that was provided

∙ table: name of the table

84



pk_annotation_id timestamp dataset table pk

Table C.2: The information that should be captured in a "pk_classification" database
when an annotation is submitted.

∙ field: name of the column

∙ chosen_type: which of the five types the user chose for this column

C.2 Primary Key Detection

Here, we will ask a user to select the primary key for a table with the UI shown in

Figure C-2. The view will display information for one table. For each column in the

table, we will display the column name, as well as the first 10 entries in that column

to let the user preview the data. There is a horizontal scroll in case all of the columns

do not fit across the width of the screen. The dropdown at the bottom of the string is

populated with all the column names in the table, and "None". Once the user selects

the name of the column that he/she thinks is the primary key (could be "None"), the

user can submit.

On the top right, there is an “Instructions" link that opens up a popover or pop

up that displays an explanation of what primary keys are and how to complete the

task.

When the user clicks submit, we want the information in Table C.2 to be entered

into a pk_detection database.

∙ pk_annotation_id: ID of the database entry

∙ timestamp: time the user submitted

∙ dataset: name of the directory that was provided

∙ table: name of the table

∙ pk: which column the user chose to be the primary key

85



Figure C-2: UI to collect annotations for a table’s primary key.

C.3 Relationship Discovery

Here, we will ask a user to identify any foreign key relationships between two tables

with the UI shown in Figure C-3. A foreign key relationship is between a column of

one table and a column of a different table. The view will display information for two

tables. The tables’ info are presented side by side, and initially looks like a list of each

table’s column names. If a user clicks on a column name, that one entry expands (an

accordion) to display the first 5 entries from the column data.

At the bottom of the screen, there is a fixed section where the user can enter any

foreign key relationships they identify. In this section, there is are two dropdowns

so they can select the two columns for which they identify a foreign key (FK) rela-

tionship. The values in each dropdown will be all the column names in both tables,

formatted as "field_name (table_name)." Because the FK must be between columns

of different tables, once the user selects one dropdown, we can change the options in

the second dropdown to only contain field names of the other table.

Once the user adds a FK, it will show up in the "Added FKs" section in the format

86



Figure C-3: UI to collect annotations for foreign keys between two tables.

fk_annotation_id timestamp dataset field1 table1 field2 table2

Table C.3: The information that should be captured in a "fk_classification" database
when an annotation is submitted.

"field1(table1) → field2(table2)." There should be an option to remove this

entry. The "Final Submit" button must only be clicked when the user has found all

FKs they think exist - to ensure this, we should add a confirmation pop up when

they click "Final Submit" to say "Have you entered all the FKs you can find? If not,

click cancel and use the Add button to add more."

On the top right, there is a "Instructions" link that opens up a popover or pop

up that displays an explanation of what primary keys are and how to complete the

task.

When the user clicks submit, we want the information represented in Table C.3

to be entered into a fk_discovery database.

∙ fk_annotation_id: ID of the database entry

87



∙ timestamp: time the user submitted

∙ dataset: name of the directory that was provided

∙ field1: name of the field the FK is from

∙ table1: name of the table containing field1

∙ field1: name of the field the FK is to

∙ table1: name of the table containing field2

C.4 Hard Constraints Discovery

Here, we will ask a user to identify any hard constraints within a table with the UI

shown in Figure C-4. A hard constraint is between either two or three columns in a

table. The view will display information for one tables. For each column in the table,

we will display the column name, as well as the first 10 entries in that column to let

the user preview the data. There is a horizontal scroll in case all of the columns do

not fit across the width of the screen.

The types of constraints we allow for are:

I. A > B

II. A + B = C

At the bottom of the screen, there is a fixed section where the user can enter any

hard constraints they identify. In this section, there are two types of hard constraints

that can be specified. If a user completely fills out either of these constraints and

pushes the corresponding ‘Add’ button, it will show up in the ‘Added Constraints’

section in the format fieldA > fieldB or fieldA + fieldB = fieldC, depending

on which type of constraint was added. There should be an option to remove this

entry. The "Final Submit" button must only be clicked when the user has found all

hard constraints they think exist – to ensure this, we should add a confirmation pop

up when they click "Final Submit" to say "Have you entered all the hard constraints

you can find? If not, click cancel and use the Add button to add more."

88



Figure C-4: UI to collect annotations for hard constraints within a table.

hc_annotation_id timestamp dataset fieldA fieldB fieldC type

Table C.4: The information that should be captured in a "hc_classification" database
when an annotation is submitted.

On the top right, there is a “Instructions” link that opens up a popover or pop up

that displays an explanation of what primary keys are and how to complete the task.

When the user clicks submit, we want the information shown in Table C.4 to be

entered into a hard_constraints_discovery database.

∙ hc_annotation_id: ID of the database entry

∙ timestamp: time the user submitted

∙ dataset: name of the directory that was provided

∙ fieldA1: name of the first field

∙ fieldB: name of the second field

∙ fieldC: name of the third field, if is the type A + B = C, otherwise None

89



∙ type: 0 if the constraint is type A > B, 1 if it is of type A + B = C

90



Bibliography

[1] Apache spark. https://spark.apache.org/docs/1.1.0/api/python/pyspark.sql.sqlcontext-
class.html. accessed: 2017-04-26.

[2] pandas. https://pandas.pydata.org/pandas-docs/stable/generated/pandas.dataframe.dtypes.html.
accessed: 2017-04-24.

[3] Kaggle airbnb new user bookings. https://www.kaggle.com/c/airbnb-recruiting-
new-user-bookings. Accessed: 2016-10-23.

[4] Amir Hassan Bahmani, Mahmoud Naghibzadeh, and Behnam Bahmani. Auto-
matic database normalization and primary key generation. Canadian Conference
on Electrical and Computer Engineering, 2008.

[5] Hendrik Blockeel, Boris Kompare SasÌŇo DzÌŇerosk and, Stefan Kramer, and
Bernhard Pfahringer. Experiments in predicting biodegradability. Applied Arti
cial In- telligence, 2004.

[6] Employee dataset. https://relational.fit.cvut.cz/dataset/Employee. Accessed:
2017-4-3.

[7] A. K. Debnath, R. L. Lopez de Compadre, A. J. Shusterman G. Debnath,
and C. Hansch. Structure-activity relationship of mutagenic aromatic and het-
eroaromatic nitro compounds. correlation with molecular orbital energies and
hydrophobicity. Journal of medicinal chemistry, 1991.

[8] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael
Stonebraker, Ahmed Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad Ouz-
zani, and Nan Tang. The data civilizer system. CIDR, 2017.

[9] Y. V. Dongare, P. S. Dhabe, and S. V. Deshmukh. Rdbnorma: - a semi-
automated tool for relational database schema normalization up to third normal
form. International Journal of Database Management Systems (IJDMS), 2011.

[10] Peter A. Flach and Iztok Savnik. Database dependency discovery: a machine
learning approach. AI Communications, 1999.

[11] Kenneth HoukjÃęr, Kristian Torp, and Rico Wind. Simple and realistic data
generation. VLDB, 2006.

91



[12] MongoDB. https://docs.mongodb.com/manual/core/data-modeling-
introduction/. Accessed: 2017-5-3.

[13] Kaggle. https://www.kaggle.com/. Accessed: 2016-10-23.

[14] James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: To-
wards automating data science endeavors. Data Science and Advanced Analytics,
2015.

[15] Jan Mot and Oliver Schulte. The ctu prague relational learning repository.
abs/1511.03086, 2005.

[16] Telstra network disruptions. https://www.kaggle.com/c/telstra-recruiting-
network. Accessed: 2016-10-26.

[17] Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault.
Data Science and Advanced Analytics, 2016.

[18] Kaggle rossman store sales. https://www.kaggle.com/c/rossmann-store-sales.
Accessed: 2016-10-23.

[19] Alexandra Rostin, Felix Naumann, Jana Bauckmann, Oliver Albrecht, and Ulf
Leser. A machine learning approach to foreign key discovery. Research Gate,
2009.

92


