
COAL: A Continuous Active Learning System

by

Jonathan Johannemann

Submitted to the MIT Sloan School of Management
in partial fulfillment of the requirements for the degree of

Master of Finance

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○ Massachusetts Institute of Technology 2017. All rights reserved.

Author .
MIT Sloan School of Management

May 26, 2017

Certified by. .
Kalyan Veeramachaneni

Principal Research Scientist
Thesis Supervisor

Certified by. .
Tauhid Zaman

Assistant Professor
Thesis Supervisor

Accepted by .
Heidi Pickett

Program Director, MIT Sloan Master of Finance Program

2

COAL: A Continuous Active Learning System

by

Jonathan Johannemann

Submitted to the MIT Sloan School of Management
on May 26, 2017, in partial fulfillment of the

requirements for the degree of
Master of Finance

Abstract

In this thesis, our objective is to enable businesses looking to enhance their prod-
uct by varying its attributes, where effectiveness of the new product is assessed by
humans. To achieve this, we mapped the task to a machine learning problem. The
solution is two fold: learn a non linear model that can map the attribute space to the
human response, which can then be used to make predictions, and an active learn-
ing strategy that enables learning this model incrementally. We developed a system
called Continuous active learning system (COAL).

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist

Thesis Supervisor: Tauhid Zaman
Title: Assistant Professor

3

4

Acknowledgments

First and foremost, I would like to thank my advisers Kalyan Veeramachaneni and

Tauhid Zaman for their support and guidance. Without their help, this thesis would

not look the same. When I was overly ambitious, they helped me stay on track and,

when I faced a wall, they provided the feedback and process necessary to push me

forward. They inspired me and made me realize the thrilling gratification that can

come with a career in research. Everything they taught me, I will always carry in the

career I make for myself.

I am incredibly grateful for the generous funding support from Coca cola for this

research. I’d like to thank the Coca cola team: Xiaorong You, Aaron Woody, Fer-

nando Carriedo, Linda Liu, Robert Kriegel, Paul D Winget, for helping us set up this

problem, explaining us its different nuances and for the many beneficial discussions

over the course of the year.

I’d like to thank all of my colleagues at Data to AI lab for a great year. Their

contagious enthusiasm for building AI systems made the research process all the more

enjoyable and exciting. I hope the best for all of them.

Finally, I’d like to thank my brother Steven and my parents for all of their love

and support.

5

6

Contents

1 Introduction 13

1.1 Active Learning vs. our current scenario 16

1.2 What are the constraints? . 17

1.3 A continuous active learning system 18

1.4 Thesis Roadmap . 19

2 Non-Linear Modeling 21

2.1 Machine Learning Models . 22

2.1.1 Neural Networks . 23

2.1.2 Gaussian Process Classifiers 23

2.1.3 Modeling with a Human Component 24

3 Active Learning 27

3.1 Active Learning Methods . 28

3.2 Active Learning Successes . 30

4 COAL: A continuous active learning system 33

4.1 Modeler, Predictor, Proposer Framework 33

4.2 Running Active Learning Iterations 34

4.3 COAL User Interface . 36

5 Robustness Experiments 39

5.1 Generating Ground Truth Models . 40

5.2 Simulating Active Learning with an Oracle 43

7

5.2.1 Evaluation Metric: Area under the Accuracy Curve 46

5.3 Machine Learning Model Selection . 47

5.4 Active Learning Method Selection . 50

5.5 Key Findings . 53

6 Conclusion 55

6.1 Key Findings . 55

6.2 Contributions . 55

6.3 Future Work . 56

8

List of Figures

2-1 This graphic depicts a basic neural network which takes 3 inputs through

the input layer, propagates these inputs through the hidden layer, and

outputs probabilities of each pre-specified class in the output layer. . 23

2-2 This graphic depicts an instance of the type of boundary that Gaussian

Process Classifiers create when fitting data. [1] 24

5-1 This graphic depicts the performance of area under the accuracy curve

for an experimental run with Gaussian Process Classifiers where one is

using smallest margin and the other is using "random". 46

5-2 This graphic depicts the performance of area under the accuracy curve

for Gaussian Process Classifiers compared to Neural Networks with one

standard deviation bounds. 50

5-3 This graphic displays the average area under the accuracy curve for the

Gaussian Process Classifier and Neural Networks, the corresponding

active learning methods, and the one standard deviation above up to

50.0 and below. 53

9

10

List of Tables

5.1 Ground Truth Model Hyperparameter Arguments 42

5.2 Scikit-learn Make_Classification Arguments 43

5.3 ML Model Robustness Test Inputs 49

5.4 Results from Model Robustness Tests 49

5.5 Active Learning Robustness Test Inputs 52

5.6 Results for Active Learning Robustness Testing 52

11

12

Chapter 1

Introduction

Businesses are constantly striving to improve old products or generate new ones. In

many industries, performance measures for products are objective: the best graphics

card runs the most computations per second, the best database provides the fastest

queries, or the best television is the one with the highest definition. In this thesis, we

focus on products for which performance is largely subjective: human assessment and

preference is required in order to determine the superior product. These assessments

can come in the form of a of rating (on a scale of 1 -5), a binary decision (like or

dislike) and in some cases judgment as to whether or not a difference is noticeable1.

This means that products require an evaluation that is far less mechanical, which

makes the feedback and testing processes much more difficult.

The current method of generating new products: We are focused on problems

where industry research departments tinker with multiple variables that make up the

product in order to come up with a new one that, when assessed by humans, will

surpass their current product in the metric of their choosing. This process relies

primarily on the domain expert’s knowledge of what may or may not work. The

domain expert also has an understanding of the various constraints and underlying

properties of the variables he or she has to work with, which could include:

∙ How variables interact: Some variables may interact with others and create

1This is the case with our sponsor, Coca Cola, where they are trying to find new coatings that
do not change a product’s flavor profile or taste experience

13

effects which might be detrimental to the intended goal.

∙ Sensitivity: Domain experts may have identified weak trends in the inputs and

human responses. Experts may observe 𝑥1 . . . 𝑥𝑘 but notice that in particular,

changes in 𝑥1 and 𝑥3 are easily noticed by humans.

∙ Variable limits: Domain experts also know the bounds within which each

of the variable’s values should fall. These bounds are often also dictated by

external factors. For example, if it is a product that is consumed, there are

certain limits on concentration for a given variable input.

While expert knowledge of variable interactions, sensitivities and constraints is ex-

tremely helpful, it still leaves a considerable amount of options for potential new

combinations, and it is challenging to search through that space. Below, we describe

a few of these challenges.

Challenges in searching through this space: While domain experts can create

a defined feature space and use their prior knowledge to search for new combinations

for products, there are limitations to what a business can do:

∙ Cost: The challenge of cost is broken into the economic costs and time costs

that come with running experiments.

Take economic costs: when running an experiment that requires human assess-

ment, participants must be paid, and accommodations must be made in order

to avoid confounding variables if any exist. Then, experts need to take their

combination of inputs and synthesize many instances of the new product in

order to get a large enough pool of responses to determine whether the new

product is significantly better. All of this can incur a large cost, and must be

done at each iteration of product testing.

On top of that, for time costs, each step of the experimentation and human

validation process may take a considerable amount of time. Time must be

allocated towards generating new products. Additionally, it also takes time to

gather a panel of humans to test the product. This results in human capital,

14

which could otherwise provide benefits to a company in a different function,

being locked up in the maintenance and continuation of a project.

∙ Domain expert limitations: Because industry scientists cannot try an end-

less number of combinations, they need to intelligently select the few that will

give them an idea of what area in their feature space they should look in.

However, domain experts are challenged as the dimensionality of the problem

increases; that is, the challenge increases along with the number of variables

they have to work with. While a domain expert may have intuitions regard-

ing interactions among a few variables, and may be able to weakly postulate

the human response, making accurate predictions becomes less feasible as the

number of variables increases.

A potential solution using machine learning: In order to solve this problem

using machine learning, one could fit a nonlinear model to determine the relationship

between the available variables and the human responses – rating, like or dislike,

judgment, or some other measure that establishes the product’s success. Then, in a

perfect setting where this relationship is accurately modeled, a user can search for

the combination of variable values that results in the best product by predicting the

human response using the model, instead of going to humans each time.

However, coming up with this accurate nonlinear model requires multiple steps

and iterations.

1. Users must first start with a few data points, which can be sampled randomly

or exist from prior experimentation.

2. Then, the existing few data points must be modeled to get a preliminary non-

linear model to work with.

3. From here, a user needs to identify valuable data points to improve the model

via an approach called active learning or data points that will bring them closer

to finding a better product, by optimizing the non linear model.

15

4. The user must then go out and synthesize a product from this combination of

data points, and retrieve an aggregate response from a panel of testers.

5. The user then updates their model and repeats the process from step 3 to further

improve their model and sample better products.

Ultimately, the result of this repeated process will create a model that allows a user

to identify the best combination of inputs for his or her product without running

countless human-in-the loop experiments.

1.1 Active Learning vs. our current scenario

Active learning is a field of study that looks to help researchers identify the data points

that will best improve their models if provided labels. [6] In the past, active learning

has worked well in areas such as image classification on image data and sentiment

classification on text data. [5] [20] There are numerous image datasets with labels

with which to conduct preliminary training of a classifier. Even without a substantial

amount of initial data, users can hire mechanical turks and acquire a sizable base to

train on for a relatively low cost due to the nature of tagging image data.

From here, users have enough data to begin making predictions on unlabeled data

in order to identify the most valuable data for their models using active learning

methods. [21] The same is true for sentiment analysis of text data. While there are

not as many text datasets with labels, and sentiment analysis does take more time,

data labeling can be done remotely in relatively little time. Then, users can repeat

the same process of building models and beginning to identify informative unlabeled

data for labeling.

In this thesis, we consider a slightly different problem where human assessments

cannot be collected remotely or digitally.

Our use case is that of sensory evaluation. In sensory evaluation, humans either

taste, smell or touch new products in order to assess them. These new products could

involve flavors or fragrances. These experiments require the physical presence of the

16

human assessor and cannot be done digitally. Additionally, they require much more

control than other types of evaluation to avoid erroneous results. In the instance

of image classification, external factors such as health, mood, or other sources that

can influence a person’s subjectivity will not impact a person’s ability to recognize

objects like a dog in a picture. However, that is not the case in sensory evaluation.

The evaluation is often done in a controlled setting to account for environmental

factors.

A perfect example is the unique problem provided to us by Coca Cola. Coca Cola

is interested in changing the coatings on the insides of their cans, but they do not want

the customer to taste a difference. In similar scenarios where companies are looking

to change a consumed product, firms take multiple steps to carefully ensure that

there are no confounding variables or measurement errors. Panelists of consumers

are brought on-site to avoid confounding variables and are given food to cleanse their

pallets after trying each sample, and results are meticulously kept. As one can see,

each iteration requires a substantial amount of time for generating new samples and

testing, and even with these precautions, a company can only run so many tests before

the panelists’ sensitivities to taste are potentially dulled. Therefore, our problem is

slightly more nuanced than most, and requires further thought before using an active

learning solution.

1.2 What are the constraints?

Let us consider, then, the unique hurdles that sensory evaluation presents for the

development of an active learning solution.

∙ We do not have many points to start with. To begin with, we do not

have many data points to develop, test and validate a machine learning model.

Without this we cannot start with a non-linear model.

∙ We cannot ask for more data points. Given the lack of data points, we

explored if we could gather more. In the time frame we set for this project,

17

however, it is unlikely that we could do so; experiments take time.

Yet our goal is to develop and deliver a machine learning system that is capable of

performing the 5 steps mentioned above in the first section under “A potential solution

using machine learning”. Hence, we examined: if we were given enough data, what

questions could we ask in order to deliver a good system? There are three questions

we would have sought to consider:

1. Which machine learning model best fits the data? There are many

different modeling techniques with different ways of modeling non-linearities.

We would have asked which non-linear model best fits this type of data.

2. Which active learning method is best? As with the above, and with a lot

of labeled data, we would have asked which one of numerous techniques would

work best for this problem.

3. Does active learning help?: We would have asked whether an active learning

loop would help in this context.

1.3 A continuous active learning system

We thus developed a continuous active learning system (COAL) as an answer to

industry’s need to navigate unlabeled data efficiently and cost-effectively. We take

in all of the considerations and predispositions mentioned above in order to create a

system that allows a user to leverage machine learning to model the data that he or

she does have and to search this space.

In order to address a lack of data to begin with, we attempt to ensure the ro-

bustness of machine learning models and active learning methods chosen to embed

in COAL. We run thousands of simulated active learning experiments that test a

variety of nonlinear models for a variety of different human assessment functions that

we create through "ground truth" models.

Then, we evaluate active learning methods in a similarly simulated process to

18

determine whether or not active learning will actually help given our problem and, if

it does, which methods are the best for this type of learning scenario.

Ultimately, the user is provided the most robust modeling technique as well as

an active learning strategy, as assessed from these experiments, that is integrated

into a series of modules. These modules allow the user to model their data, predict

the response from a combination of inputs, and intelligently propose new queries for

labels. This way, after enough initial experimentation and human testing, a user

would be able to accurately model the function that drives human assessment and

infinitely test new products without the costs that are typically associated with that

process.

1.4 Thesis Roadmap

The remainder of the thesis is organized as follows:

Chapter 2 introduces how machine learning is used, one of the major challenges

that modelers face, the models we test, and successful use cases.

Chapter 3 talks about how active learning is used, some of the strategies, and past

successes.

Chapter 4 discusses the COAL system and its primary components at length, and

introduces an end-to-end explanation of its use. Chapter 5 runs through the process

of how we go about simulating active learning experiments and the results of these

simulations. Finally, Chapter 6 reviews key findings, identifies the core contributions

of this work, and provides insight into what future work will look like.

As a whole, this thesis introduces a system for running active learning in non-

traditional active learning settings.

19

20

Chapter 2

Non-Linear Modeling

One of the core components of the solution is the non-linear model, which is the

user’s attempt at recreating the actual underlying function that determines a human’s

response. The non-linear model does what a domain expert cannot by capturing

higher-dimensional relationships, and providing a more analytically sound method of

making forecasts on the outcomes of testing given a combination of variables. As a

result, many companies are currently taking advantage of machine learning in tasks

that can be systematically broken down, and where basic human discretion can be

substituted with statistical forecasts.

Overview of using machine learning: Many resources have been created that al-

low users to easily train and utilize machine learning models in a variety of languages.

The following provides a basic understanding of how machine learning models are

built, and how they function:

1. Prior to training: Prior to training, machine learning models comprise a

series of assumptions about the data, adjustable weights or kernels, and an

algorithmic framework through which the function inputs pass through.

2. Training the models: Training machine learning models focuses on finding

a set of parameter weights that, when combined with the model assumptions

and the algorithmic framework of the model, provide an output close to the

actual observed process. This process may be thought of as a user going back

21

and forth between inputs and outputs by tweaking the weights of the model so

that, if the same inputs were ever provided in the future, they would provide

the same corresponding outputs.

3. Using the model after training: The primary function of using a machine

learning model after training is to forecast the output of a new set of inputs.

The model selection problem: One of the main problems in machine learning is

determining the model that best captures the relationship between the input variables

𝑥1 . . . 𝑥𝑘 and the response variable 𝑦. These models, to list just a few, include random

forests, support vector machines, Gaussian processes, and neural networks, all of

which make different assumptions about the data and model the data in substantially

different ways. In most modeling scenarios, the user has a sizable pool of data to

model from. The benefit of having this pool is that a user can fit a wide variety

of models to the data to determine which achieves the best accuracy or is the most

robust. A large pool of data allows the user to run various forms of cross-validation,

and modelers can use multiple different model selection methods to determine which

model is right for the task. Sadly, we do not have a large enough initial pool of

data; hence, there is no way for us to explore various models, simply because there

will not be enough instances to draw any conclusions with conviction. Therefore, we

are required to make different considerations in our model selection process, and run

tests as specified in Section 5 in order to choose the most robust model for all cases

as opposed to a model that would be a best fit for a given application.

2.1 Machine Learning Models

In this thesis, we focus primarily on two classification methods with the capacity to

capture highly non-linear relationships between data points and a response variable.

The two models that we focus on are Gaussian process classifiers and neural networks.

22

Figure 2-1: This graphic depicts a basic neural network which takes 3 inputs through
the input layer, propagates these inputs through the hidden layer, and outputs prob-
abilities of each pre-specified class in the output layer.

2.1.1 Neural Networks

Neural networks are a very powerful type of nonlinear classifier that have grown in

popularity due to recent strides in areas such as computer vision and natural language

processing (we have even found instances in which researchers used neural networks in

conjunction with sensory analytics [23]). A neural network is generally characterized

by an input layer, a hidden layer which is its defining feature, and an output layer

where label probabilities are outputted. Another way to think of neural networks

is as a series of layered logistic regression functions. At each node of the neural

network, multiple inputs are provided and go through a sigmoid function, just as

they would in a logistic regression. The difference is that neural networks take the

outputs of the initial nodes or sigmoids and use those as inputs to additional logistic

regression functions. This ultimately results in a highly nonlinear classifier that is

able to capture a variety of different functions.

2.1.2 Gaussian Process Classifiers

The second nonlinear classification model that we consider is the Gaussian process

classifier. This model is also able to robustly capture nonlinear relationships. The

23

Figure 2-2: This graphic depicts an instance of the type of boundary that Gaussian
Process Classifiers create when fitting data. [1]

Gaussian Process Classifier is non-parametric and specified by its mean function and

covariance function. Perhaps one of the easier-to-understand explanations of Gaussian

Processes can be found in Murphy’s Machine Learning: A Probabilistic Perspective:

A GP defines a prior over functions, which can be converted into a

posterior over functions once we have seen some data. Although it might

seem difficult to represent a distribution over a function, it turns out that

we only need to be able to define a distribution over the function’s values

at a finite, but arbitrary, set of points, say 𝑥1 . . . 𝑥𝑁 . A GP assumes

that 𝑝(𝑓(𝑥1), . . . , 𝑓(𝑥𝑁)) is jointly Gaussian, with some mean 𝜇(𝑥) and

covariance
∑︀

(𝑥) given by
∑︀

𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗), where k is a positive definite

kernel function. The key idea is that if 𝑥𝑖 and 𝑥𝑗 are deemed by the kernel

to be similar, then we expect the output of the function at those points

to be similar, too. [11]

The Gaussian Process is then funneled through a sigmoid function which, just

as it does in logistic regression, turns the problem from a regression problem into a

classification problem.

2.1.3 Modeling with a Human Component

While it may seem overly complicated to model the behavior or abilities of people

given that each person is unique, at an aggregate level, scientists have found that there

are patterns that persist. Companies such as Netflix are able to create recommender

24

systems that identify human preferences and provide suggestions on what the person

may want to watch next. [22] Researchers are also capable of identifying the content of

images with a high degree of accuracy. [10] What these successes in machine learning

mean is that any process can be modeled and to a high degree of accuracy even when

something as fickle as a human is involved. However, at the end of the day, these

models are only frameworks and are as good as the data they are trained on which

brings us to Section 3.

25

26

Chapter 3

Active Learning

The active learning problem is best known as a situation where a modeler wishes

to identify a relationship between a set of input variables 𝑥1 . . . 𝑥𝑘 and a response

variable 𝑦 but has largely unlabeled data. The alternative scenario is a branch of

machine learning called supervised learning where the user receives input values for

each variable 𝑥1 . . . 𝑥𝑘 and also receives the actual outputs 𝑦 for those values. This

scenario is far more common because it does not require much discretion in the

gathering of data points. However, in active learning, usually due to some cost of

labeling or gathering each response value 𝑦, researchers attempt to formally capture

the relationship with the fewest labels 𝑦.

The active learning process: In active learning, the process is composed of two

main constituents: the oracle and the modeler. The oracle is an omniscient labeler

who is capable of providing a label for any combination of inputs asked for by the

modeler. However, each request for a label comes at some cost. In order to minimize

the cost, the modeler uses his or her model that has been trained on the data he or

she does have labels for, the unlabeled data, and active learning methods to identify

valuable or informative data points. After each query is made to the oracle, the

modeler updates the trained model which brings it closer to the true relationship

between the input variables and the response variable. From here, the modeler repeats

this process to continually improve the accuracy of the trained model.

27

3.1 Active Learning Methods

There are a wide variety of ways to determine whether a given unlabeled data point

is informative. Information can come from the nature of the data itself if there are

clusters or certain structures such as multiple levels of clustering. A modeler can also

look at the model he or she is using as well to determine what could potentially be

helpful for capturing the relationship in the data. He or she could see if the model

believes that two classes are equally probable or whether or not updating the model

with a given data point and label would reduce the overall prediction error.

The methods that we explore for the COAL system at this current time are pri-

marily the single-query methods that are well established throughout active learning

literature. They are smallest margin and entropy. These methods are generally well

understood and fairly easy to interpret given their simplistic nature. The process to

use these methods is as follows:

1. As a modeler, you begin with your labeled data X and labels Y.

𝑋𝑙𝑎𝑏𝑒𝑙𝑒𝑑 =

⎡⎢⎢⎢⎣
𝑥11 . . . 𝑥1𝑁

...

𝑥𝑀1 . . . 𝑥𝑀𝑁

⎤⎥⎥⎥⎦ and 𝑌𝑙𝑎𝑏𝑒𝑙𝑒𝑑 =

⎡⎢⎢⎢⎣
𝑦1
...

𝑦𝑀

⎤⎥⎥⎥⎦
2. You then train your classification model 𝑓(𝑥) = 𝑦.

3. From here, you predict the probabilities of each class C for all 1 to K classes on

all unlabeled data points.

𝑋𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 =

⎡⎢⎢⎢⎣
𝑥11 . . . 𝑥1𝑁

...

𝑥𝑀1 . . . 𝑥𝑀𝑁

⎤⎥⎥⎥⎦⇒ 𝑓(𝑋𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑) =

⎡⎢⎢⎢⎣
𝑝1(𝐶1) . . . 𝑝1(𝐶𝐾)

...

𝑝𝑀(𝐶1) . . . 𝑝𝑀(𝐶𝐾)

⎤⎥⎥⎥⎦
4. Next, the user can choose to use smallest margin or entropy to determine the

next query.

28

For smallest margin [14]:

(a) For each row, find the two highest probability values and calculate the

difference ∆ between the two values.

(b) Append each delta to a list called Margin.

𝑀𝑎𝑟𝑔𝑖𝑛 =
[︁
∆1 . . .∆𝑀

]︁

(c) Now, sort the list from lowest to highest in descending order and select

the top query to propose by finding the index corresponding to the actual

combination of inputs 𝑥 found in 𝑋𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑.

For entropy [19]:

(a) For each row, calculate the entropy of 𝑓(𝑋𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑) as 𝑒𝑛𝑚 =
∑︀𝐾

𝑛=1 𝑝𝑚𝑛𝑙𝑜𝑔2(𝑝𝑚𝑛).

(b) Append each entropy value to a list called Entropy.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =
[︁
𝑒𝑛1 . . . 𝑒𝑛𝑀

]︁

(c) Now, sort the list from highest to lowest in descending order and select

the top query to propose by finding the index corresponding to the actual

combination of inputs 𝑥 found in 𝑋𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑.

On a last note, another strategy that we will refer to is the "Random" uncertainty

sampling strategy. Random is essentially how supervised learners will sample data or

those that use little to no discretion in determining what data is more informative.

To use this method, one just randomly selects a data point from the existing data

pool. This is what we consider as the benchmark for the efficacy of the active learning

strategies.

29

3.2 Active Learning Successes

In recent years, active learning has grown in popularity due to a widespread interest

in determining whether or not machine learning can solve a variety of problems in

industry. Some of the potential benefits that users of active learning are looking for

are:

∙ Reduction of Costs: This factor is key, because companies are limited in the

amount of time and money they have to create a new product. Also, there is a

competitive edge for those who are able to generate a product faster.

∙ Training Time Reduction: Although GPU computation has improved sub-

stantially in the last decade, modelers are still looking for means to cut down on

the amount of time it takes to train a model. In [21], training a deep neural net

for image classification took 17 hours with a Titan X GPU for 44,708 images

which was one of the fastest commercial graphics cards available at that time.

Even with the computational improvements since then and the ability to run

calculations in parallel, researchers are limited in the complexity of the model

that they can train. Therefore, modelers are hoping to reduce the training data

sets to at least gain some reduction in the amount of computation required in

order to achieve the same accuracy results as one would get if training on all of

the data available.

∙ Improving Existing Classifier Accuracy: Finally, a third application for

active learning is also for the sake of further improving models. While many

modelers are able to capture the more robust features of the classes that they

are trying to identify in image data and so on, their models still tend to suffer

in edge cases. This is another area where, even after one has fully trained a

model, active learning can still provide a level of benefit by capturing rare or

unusual cases to learn a model from.

Proof of Active Learning Success: At this point, active learning has definitively

proven its value across multiple applications in literature. Drawing once again from

30

[21], researchers were able to train a deep learning model with slightly above 60%

of the the CACD dataset [4] that was carefully chosen using active learning and

achieved a similar accuracy rate to a supervised learner who used the entire dataset

to train the same model. Then, in [3], researchers used Gaussian mixture models with

active learning on the VidTIMIT [7], a video and audio dataset, and MOBIO [13],

a biometric dataset. In both cases, active learning methods performed much better

than the supervised learning benchmark of randomly selecting data points to label.

In some cases, the active learning methods allowed the modeler to achieve the same

accuracy as the supervised learner but having trained on half the number of data

points. There is a great deal of interest in how the data collection process can help

researchers create better models with fewer labeled data points.

31

32

Chapter 4

COAL: A continuous active learning

system

To reiterate, the problem that COAL aims to tackle is the scenario where a modeler

is trying to determine the most informative data points in order to build a model that

is representative of the underlying data generating process. This process is generally

unknown to the domain expert or user and, at most, users generally have an idea

of constraints only but not much more. COAL’s objective is to take this problem

and map it to a learning problem through the use of active learning strategies and

machine learning models. COAL’s framework allows users to continually query for

data points in order to find informative data points and continuously improve the

accuracy and conviction of their models.

4.1 Modeler, Predictor, Proposer Framework

The COAL system has three components.

1. Modeler: The modeler models the latest available data samples. In our case,

these data samples are the input variables 𝑥1 . . . 𝑥𝑘 and the aggregated response

from the human panel. To model this data, we chose two different types of

modeling techniques: neural networks and Gaussian process modeling.

33

2. Predictor: The predictor module allows the user to propose a new combination

of variables and receive two prediction outputs. The first prediction will be the

label that the model believes that the data point has and the second value

will be the probability that the model assigns to the likelihood of it being the

“detected” label.

3. Proposer: Using the active learning methods we developed, the proposer sug-

gests the next combination of input variables to try by proposing attributes,

which the user can then experiment with. The proposer uses the latest model

and the data from the past experiments to come up with new data to query.

The proposer then creates a number of data points by generating values for

attributes 𝑥1 . . . 𝑥𝑘 and by stepping through the multidimensional space with a

step size s. This will create Π𝑘
𝑖=1|

𝑚𝑎𝑥(𝑥𝑖)−𝑚𝑖𝑛(𝑥𝑖)
𝑠

| possible input combinations.

Next, we pass all these candidates through the up-to-date model. The model, in

turn, provides the likelihood probability for each of the input combinations to

succeed in human panel testing. Our goal is to pick a candidate from these. In

order to maximize exploration of the space, we use two methods such as smallest

margin and entropy to pick a candidate[6]. As a result of querying informative

samples, we have a higher potential for more consistency and improvement in

accuracy of our model as new samples are labeled and added to the model.

4.2 Running Active Learning Iterations

Now that we have outlined the core components of the COAL system, we go into

detail on how one would run active learning iterations. The COAL system is to be

used in the following manner:

1. The user provides preliminary data with labels, model type, and model hyper-

parameters to the Modeler function.

2. The Modeler function trains the selected model on the provided data.

34

3. The Modeler function creates a "Trained_Model.pkl" file which is saved to the

current working directory.

4. The Modeler function outputs the current model to be used in further compo-

nents of the COAL system.

5. From here, users are able to leverage the model to gain access to the predictor

and proposer functionalities and would start with the Predictor function.

6. To use the predictor, the user provides inputs for each variable and then clicks

predict. This allows a user to formulate potential queries and compare with

the current model to see if the model agrees with his or her intuition. In many

cases, these potential query designs can come from different analytical methods.

7. Now, the user moves on to the Proposer function and provides the trained model

which was created using Modeler, the number of variables, the minimum ranges

for each variable, the maximum range values for each variable, the step sizes to

be observed between each minimum and maximum value, the active learning

method, and the number of queries.

8. The proposer then consists of three sequences that occur in the following order:

(a) The proposer makes a call to an internal function called "Data Generator".

The Data Generator function takes the trained model, number of variables,

minimum range values, maximum range values, and step sizes in order

to generate a range of data point combination defined by the inputted

values. For example, if I have 1 variable, a minimum range value of 0, a

maximum range value of 10, and a step size of 2, the outputted data will

be [0,2,4,6,8,10].

(b) The proposer then has the trained model predict on the entire array of

input values that were created by the Data Generator function. The result

of these predictions are a series of probabilities for each provided label

class.

35

(c) Finally, the proposer makes a call to one of the active learning strategy

functions depending on the active learning method parameter provided to

the proposer function. The active learning function will return informative

queries based on the probabilities provided and the number of queries

requested.

9. The proposer then outputs the informative samples for the user to take to an

external oracle for the labels to be queried.

10. Once the labels have been identified for the informative samples, the user is to

add these data points along with their labels to the respective input X and label

Y arrays.

11. Now, since the data has been updated and there is new data to train on, the user

will once again call Modeler to update the model based on the new information

provided.

12. The user repeats steps 6 - 10 continuously in order to further explore the feature

space until generally an external constraint such as an economic stopping criteria

is applied.

4.3 COAL User Interface

Additionally, we developed a front end application for users without programming

experience to gain access to COAL. The following steps provided will guide a user

through the active learning process via this interface. Much of this process is similar

to Section 4.2 but with a few nuances that are specific to the user interface. The

steps are as follows:

1. The user is prompted for the number of variables which is saved in the back

end.

2. The user is prompted for the variable names to carefully track what values

correspond to what ingredients or actual variables in the experiment.

36

3. The user then goes to the Modeler page which has four different windows. One

for Panelist responses, one for ingredients, one to model the data, and one to

download the training data so far.

4. The user clicks on the upload button under ingredients in order to upload an

"Ingredients.csv" file.

5. The user clicks on the upload button under the panelist responses in order to

upload a "Panelist_Responses.csv" file.

6. Then, the user clicks the "Model" button under the Modeling section. Behind

the scenes, the chi-square test is calculated for the panelist responses to deter-

mine the aggregate response of the panelists. Then, the ingredients and aggre-

gate responses are joined and appended to the "Training_Data_So_Far.csv".

Finally, a model is trained based on the ingredients or variables and the re-

sponses in the "Training_Data_So_Far.csv" file.

7. From here, the user can move on to other modules. Next, a user may proceed

to the Predictor module.

8. The user provides inputs for each variable and then clicks predict. This allows

a user to check to see what the model thinks about various combinations of

potential inputs. This stage is where the user can evaluate certain priors based

on application based knowledge and further validate or question his or her

hypothesis of viable data points to label.

9. Next, the user can go to the Proposer module which will allow him or her to take

advantage of active learning strategies. The user supplies the maximum value

constraints, the minimum value constraints, the step size, and active learning

method in order to get a proposed combination of variables.

10. The user would then synthesize a product from these combinations of variables

and test them in order to generate more responses for a "Panelist_Responses.csv"

37

file. Furthermore, the researcher would input the combination of variables into

another "Ingredients.csv" file.

11. Finally, the user would go back to the Modeler page and repeat the process from

Step 3 with the new "Ingredients.csv" and "Panelist_Responses.csv" files.

38

Chapter 5

Robustness Experiments

In traditional machine learning, data collection is often trivial, and data scientists are

able to hire mechanical turks [8] to collect thousands of data points to build initial

models. This allows them to try a wide variety of models such as neural networks,

random forests, support vector machines, and many more to determine which model

is the best for the task at hand. Since we want to address situations with no or

minimal data in this thesis, we need to devise a means of testing viable models for

robustness so that, when the data is introduced, the model is able to capture all of

the underlying nuances and variations.

Second, this relatively substantial pool of initial data also allows the best model

to begin to robustly capture some of the underlying relationships in the data. Re-

searchers have found that active learning, which tends to focus on unclear or "hard

to identify" examples without a base of "easy to identify" data points, can confuse a

model into failing to create robust decision boundaries [2]. Therefore, in this section,

we also seek to answer whether or not active learning helps in our scenario and, if

multiple models are helpful, which one is the most robust.

To answer these questions, we begin by coming up with different variations of

nonlinear ground truth models to replicate what the data might look like. In Sec-

tion 5.1, we describe the steps necessary to create each ground truth model, and go

through what can be varied in the process. Then, in Section 5.3, we address the ma-

chine learning model selection process. In this section, we select a model, run many

39

simulated active learning experiments with various ground truth models, and collect

the aggregate statistics of our evaluation metric which is introduced in Section 5.2.

This provides us with an expectation of how a model should perform when used in a

real experiment. Next, in Section 5.4, we simulate many active learning experiments

again, but vary the active learning methods. This generates insight into what active

learning methods perform the best overall, and into which models a particular method

performs the best with. Finally, we evaluate the variance of our evaluation metric

in order to determine the most robust models and methods. We look for the lowest

variance in performance across many iterations in order to find the most robust model

and active learning method.

5.1 Generating Ground Truth Models

The ground truth model is an essential component to replicating the active learning

process because it acts as the data labeler or "oracle" as mentioned in Chapter 3.

Throughout our testing of the active learning process, when an active learning strategy

has identified an informative data point, the modeler queries the oracle for a label

for that data point. Furthermore, in literature [9] [15] [17], researchers have found

that different strategies perform better for different applications. Therefore, it is

imperative that we systematically define the ground truth model generating process

in order to generate insights on how training models and active learning strategies

interact when the underlying process is driven by one type of oracle model or another.

The ground truth model generating process is broken down into the four steps, as

described below:

1. Generating Ground Truth Data: To generate the ground truth model, we

start by using scikit-learn’s make_classification function, which creates clusters

of data points with labels based on a series of inputs listed below.

∙ n_samples: This determines the number of samples that the function

will generate.

40

∙ n_features: This parameter determines the number of features that will

be created in the resulting input variable matrix X.

∙ n_informative: This parameter will determine the number of variables

that are actually informative relative to the response variable.

∙ n_redundant: This parameter will create redundant variables that are

meant to create collinearity.

∙ n_clusters_per_class: This parameter determines the number of clus-

ters that are generated per class.

∙ n_classes: This parameter determines the number of classes that will be

created in the response vector y.

∙ class_sep: This parameter determines the distance of one cluster from

another. The larger the class_sep value, the more distant the clusters are

from each other, and the easier the classfication problem becomes.

Ultimately, the output of this function is an input X matrix with N variables

and M data points and a response vector Y with M data labels which abides by

the parameters provided.

𝑋 =

⎡⎢⎢⎢⎣
𝑥11 . . . 𝑥1𝑁

...

𝑥𝑀1 . . . 𝑥𝑀𝑁

⎤⎥⎥⎥⎦ 𝑌 =

⎡⎢⎢⎢⎣
𝑦1
...

𝑦𝑀

⎤⎥⎥⎥⎦
2. Pick Model Type: The next step is to choose the model that determines the

relationship between the X input values and the Y response variable. There

is an extensive list of different machine learning models that make different

assumptions, have their own limitations, and capture nonlinearities in their

own specific way. A few examples include:

∙ Decision Trees which map predictors to the predicted variable by split-

ting the feature space repeatedly until the majority of data points after

several splits belongs to just one class.

41

Ground Truth Model Hyperparameter Explanation
Neural Network 1 hidden layer size = (100,) One layer, 100 nodes
Neural Network 2 hidden layer size = (30,30) 2 layers, 30 nodes each
Neural Network 3 hidden layer size = (20,20,20) 3 layers, 20 nodes each
GP Classifier 1 kernel = 1.0*RBF(1.0) radial basis function, length_scale 1.0
GP Classifier 2 kernel = 2.0*RBF(1.0) 2*radial basis function, length_scale 1.0
GP Classifier 3 kernel = 5.0*RBF(2.0) 5*radial basis function, length_scale 2.0

Table 5.1: Ground Truth Model Hyperparameter Arguments

∙ Neural Networks which consists of a series of layered logistic regression

functions. In image data, neural networks can capture the edges in images

and use additional functions such as "convolution" to combine edges into

outlines of the faces of dogs, cats, and people.

∙ Support Vector Machines which look for the separating hyperplane

that maximizes the distance between two classes.

∙ Gaussian Process Classifier which uses approximations to determine

the most likely Gaussian function based on the observed data points, and

then passes those values through a sigmoid function to make classification

predictions.

3. Pick Hyperparameters: After the model is chosen, there are multiple hy-

perparameters in each model that can be tinkered with. In the ground truth

models that we pick, the hyperparameter selection are shown in Table 5.1.

4. Train Model: At this point, a user is ready to create a ground truth model.

He or she will:

(a) Take the data created from scikit-learn’s make_classification.

(b) Retrieve the model and the model hyperparameters.

(c) Train or fit the model in order to create the ground truth model.

5. Collect and Save Model: Finally, the user should collect and save the model.

In Python and scikit-learn, models are saved through a Pickle file in sklearn’s

"externals" subpackage.

42

n_samples 1000
n_features 2

n_informative 2
n_redundant 0

n_clusters_per_class 1
n_classes 2
class_sep 3.0

Table 5.2: Scikit-learn Make_Classification Arguments

For the experiments that we run, we create ground truth models with the following

parameters.

1. We selected the parameters for the scikit-learn make_classification function

from Table 5.2.

2. Then, we picked the Gaussian Process Classifier and Neural Networks as our

desired ground truth models.

3. Finally, we chose the hyperparameters as listed in Table 5.1.

As a result, we developed 6 highly nonlinear models to act as the ground truth for

the experimental results in Section 5.3.

5.2 Simulating Active Learning with an Oracle

Next, since we create various ground truths through training nonlinear models, we are

able to simulate active learning without real data. These active learning iterations

are depicted in Algorithm 1 from lines 6 to 11. The oracle provides the labels in

response to a query, the queried data is appended to the model training set, the

model is trained, and finally a new query is generated through active learning.

43

Algorithm 1: Active Learning with an Oracle
Input : Active Learning Iterations 𝐼, Maximum Range values 𝑀𝑎𝑥𝑣,

Minimum Range values 𝑀𝑖𝑛𝑣, Stepsize values 𝑆𝑣, Number of

Variables 𝑣, Initial Number of Data Points 𝐼0, Number of Queries 𝑁𝑄

Output: mean and standard deviation of 𝐶𝐸

1 Pick an untrained model 𝑓𝑅 for robustness testing.

2 Pick an active learning method 𝐴𝐿.

3 𝑋𝑎𝑙𝑙 ← Data_Generator(v, 𝑀𝑎𝑥𝑣, 𝑀𝑖𝑛𝑣, 𝑆𝑣).

4 𝑋𝑄𝑢𝑒𝑟𝑦 ← randomly sample 𝐼0 data points from 𝑋𝑎𝑙𝑙.

5 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑋𝑇𝑅𝐴𝐼𝑁 , 𝑌𝑇𝑅𝐴𝐼𝑁 , 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 as empty matrices.

6 for 𝑗 = 0 to 𝐼 do

7 𝑌𝑄𝑢𝑒𝑟𝑦 ← 𝑓𝐺𝑇 (𝑋𝑄𝑢𝑒𝑟𝑦).

8 Append 𝑋𝑄𝑢𝑒𝑟𝑦 to 𝑋𝑇𝑅𝐴𝐼𝑁 and 𝑌𝑄𝑢𝑒𝑟𝑦 to 𝑌𝑇𝑅𝐴𝐼𝑁 .

9 Train 𝑓𝑅 on 𝑋𝑇𝑅𝐴𝐼𝑁 .

10 𝑋𝑄𝑢𝑒𝑟𝑦 ← Proposer(𝑓𝑅, 𝑋𝐴𝐿𝐿, 𝐴𝐿, 𝑁𝑄).

11 end

Now that we have the ground truth model to query labels from, the remaining

component is the Proposer which comes up with the actual queries. The Proposer’s

functionality is explained in Algorithm 2 and utilizes the active learning methods that

were discussed in Chapter 3.

44

Algorithm 2: Proposer Function

1 Function Proposer(𝑓𝑅, 𝑋𝐴𝐿𝐿, 𝐴𝐿, 𝑁𝑄):

2 𝐶𝑙𝑎𝑠𝑠_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠← 𝑓𝑅(𝑋𝐴𝐿𝐿)

3 𝐼𝑛𝑑𝑖𝑐𝑒𝑠 ← 𝐴𝐿(𝐶𝑙𝑎𝑠𝑠_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠,𝑁𝑄)

4 𝑋𝑄𝑢𝑒𝑟𝑦 ← 𝑋𝐴𝐿𝐿[𝐼𝑛𝑑𝑖𝑐𝑒𝑠]

5 return 𝑋𝑄𝑢𝑒𝑟𝑦

6 Function Smallest_Margin(𝐶𝑙𝑎𝑠𝑠_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 𝑁𝑄):

7 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑀𝑎𝑟𝑔𝑖𝑛 as an empty list.

8 for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶𝑙𝑎𝑠𝑠_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠) do

9 𝑚𝑎𝑥1 ← is the 1st largest class probability

10 𝑚𝑎𝑥2 ← is the 2nd largest class probability

11 ∆𝑖 ← 𝑚𝑎𝑥1 − 𝑚𝑎𝑥2.

12 Append [∆𝑖, 𝑖] to 𝑀𝑎𝑟𝑔𝑖𝑛.

13 end

14 𝑀𝑎𝑟𝑔𝑖𝑛← Sort(𝑀𝑎𝑟𝑔𝑖𝑛) by ∆ in ascending order.

15 return first 𝑁𝑄 values in the 𝑖 column from 𝑀𝑎𝑟𝑔𝑖𝑛

16 Function Entropy(𝐶𝑙𝑎𝑠𝑠_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 𝑁𝑄):

17 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 as an empty list.

18 𝐾 ← 𝑁𝑢𝑚𝑏𝑒𝑟 𝐶𝑜𝑙𝑢𝑚𝑛𝑠 𝑖𝑛 𝐶𝑙𝑎𝑠𝑠_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

19 for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶𝑙𝑎𝑠𝑠_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠) do

20 𝑒𝑛𝑖 =
∑︀𝐾

𝑛=1 𝑝𝑖,𝑛𝑙𝑜𝑔2(𝑝𝑖,𝑛).

21 Append [𝑒𝑛𝑖, 𝑖] to 𝐸𝑛𝑡𝑟𝑜𝑝𝑦.

22 end

23 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ← Sort(𝐸𝑛𝑡𝑟𝑜𝑝𝑦) by the 𝑒𝑛 column in descending order.

24 return first 𝑁𝑄 values in the 𝑖 column from 𝐸𝑛𝑡𝑟𝑜𝑝𝑦

25 Function Random(𝐶𝑙𝑎𝑠𝑠_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠, 𝑁𝑄):

26 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑅𝑎𝑛𝑑𝑜𝑚 as an empty list.

27 Append 𝑁𝑄 randomly sampled values from

1 𝑡𝑜 𝑙𝑒𝑛𝑔𝑡ℎ(𝐶𝑙𝑎𝑠𝑠_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠) without replacement to 𝑅𝑎𝑛𝑑𝑜𝑚.

28 return 𝑅𝑎𝑛𝑑𝑜𝑚

45

5.2.1 Evaluation Metric: Area under the Accuracy Curve

One of the unique benefits that we get with the ability to assume a ground truth

model is that we can infinitely query our own oracle. This luxury is not available in

the real world and is generally not considered. The are two main benefits to this:

1. For any ground truth model we generate, we can exactly determine our training

model’s accuracy relative to the ground truth. Whether we decide to expand

the constraints or severely reduce the stepsize values, additional data collection

outside of the original dataset comes at no extra cost.

2. Also, since we create the ground truth model, we know that a robust enough

model should be able to converge perfectly to the ground truth model if given

enough data.

Figure 5-1: This graphic depicts the performance of area under the accuracy curve
for an experimental run with Gaussian Process Classifiers where one is using smallest
margin and the other is using "random".

Given these two bits of knowledge, we can know exactly how beneficial a query is

for learning the ground truth and, if using the same type of model as the ground

truth model, we know exactly what the weights have to be. Therefore, we created

an evaluation metric to take advantage of this benefit which is the area under the

accuracy curve and calculated as such:

46

Area under the Accuracy Curve =
∑︀𝑁

𝑛=1 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑛

Since accuracy alone is a static measure and does not consider the progression

in accuracy improvements, we aggregate over active learning iterations to capture

these changes that can differentiate one method from another. In Figure 5-1, we

drew on two single experiments from the many active learning simulations: one with

a Gaussian Process Classifier that uses smallest margin active learning and another

that uses a Gaussian Process Classifier with random sampling. We can see that the

Gaussian Process Classifier experiment that used the smallest margin active learning

method has substantially more area under its accuracy curve relative to the Gaussian

Process Classifier experiment that used the random sampling method which signifies

better performance.

5.3 Machine Learning Model Selection

For machine learning model selection, we outline the process that we use to simulate

many variations of active learning experiments for a chosen model in Algorithm 3.

47

Algorithm 3: Testing ML Models for Robustness
Input : Max Iterations 𝐼 , Number Experiments 𝐸, Maximum Range values

𝑀𝑎𝑥𝑣, Minimum Range values 𝑀𝑖𝑛𝑣, Stepsize values 𝑆𝑣, Number of

Variables 𝑣, Initial Number of Data Points 𝐼0, Number of Queries 𝑁𝑄

Output: mean and standard deviation of 𝐶𝐸

1 Pick an untrained model 𝑓𝑅 for robustness testing.

2 Pick an active learning method 𝐴𝐿.

3 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐶𝐸 as an empty list.

4 for 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 𝑓𝐺𝑇 in 𝑇𝑎𝑏𝑙𝑒 5.1 do

5 for 𝑖 = 0 to 𝐸 do

6 𝑋𝑎𝑙𝑙 ← Data_Generator(v, 𝑀𝑎𝑥𝑣, 𝑀𝑖𝑛𝑣, 𝑆𝑣).

7 𝑋𝑄𝑢𝑒𝑟𝑦 ← randomly sample 𝐼0 data points from 𝑋𝑎𝑙𝑙.

8 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑋𝑇𝑅𝐴𝐼𝑁 , 𝑌𝑇𝑅𝐴𝐼𝑁 , 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 as empty matrices.

9 for 𝑗 = 0 to 𝐼 do

10 𝑌𝑄𝑢𝑒𝑟𝑦 ← 𝑓𝐺𝑇 (𝑋𝑄𝑢𝑒𝑟𝑦).

11 Append 𝑋𝑄𝑢𝑒𝑟𝑦 to 𝑋𝑇𝑅𝐴𝐼𝑁 and 𝑌𝑄𝑢𝑒𝑟𝑦 to 𝑌𝑇𝑅𝐴𝐼𝑁 .

12 Train 𝑓𝑅 on 𝑋𝑇𝑅𝐴𝐼𝑁 .

13 𝑦𝑅 ← 𝑓𝑅(𝑋𝑎𝑙𝑙).

14 𝑦𝐺𝑇 ← 𝑓𝐺𝑇 (𝑋𝑎𝑙𝑙).

15 𝐴𝑐𝑐 ← 1
𝑃

∑︀𝑃
𝑛=1 𝛿(𝑦𝐺𝑇,𝑛 == ˆ𝑦𝑅,𝑛) where 𝑃 = length of 𝑦𝐺𝑇

16 Append 𝐴𝑐𝑐 to 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖.

17 𝑋𝑄𝑢𝑒𝑟𝑦 ← Proposer(𝑓𝑅, 𝑋𝐴𝐿𝐿, 𝐴𝐿, 𝑁𝑄)

18 end

19 Append
∑︀𝐼

𝑛=1 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖,𝑛 to 𝐶𝐸.

20 end

21 end

22 return 𝑀𝐸𝐴𝑁(𝐶𝐸), 𝑆𝑇𝐷(𝐶𝐸)

48

To test the Gaussian Process Classifier and Neural Networks for robustness, we

ran Algorithm 3. The inputs that we used for testing the machine learning model

robustness are shown in Table 5.3.

Input Name Value

Number Experiments 100

Number Iterations 50

N dimensions 2

Minimum Range values [-100,-100]

Maximum Range values [100,100]

Stepsizes values [10,10]

Initial Number of Data Points 3

Number of Queries 1

Active Learning Method Smallest Margin

Table 5.3: ML Model Robustness Test Inputs

The results from our experiments are shown in Table 5.5 and key findings are

mentioned in Section 5.4.

Model Area Under the Accuracy Curve Standard Deviation

Neural Networks 47.50 2.60

Gaussian Process Classifier 46.61 1.37

Table 5.4: Results from Model Robustness Tests

Additionally, we provide a boxplot visualization in Figure 5-2 to show how area

under the accuracy curve and the variance of the area differ.

49

Figure 5-2: This graphic depicts the performance of area under the accuracy curve
for Gaussian Process Classifiers compared to Neural Networks with one standard
deviation bounds.

5.4 Active Learning Method Selection

For active learning method selection, we outline the process that we use to simu-

late many different variations of active learning experiments for a chosen method in

Algorithm 4.

50

Algorithm 4: Testing Active Learning Methods for Robustness
Input : Max Iterations 𝐼 , Number Experiments 𝐸, Maximum Range values

𝑀𝑎𝑥𝑣, Minimum Range values 𝑀𝑖𝑛𝑣, Stepsize values 𝑆𝑣, Number of

Variables 𝑣, Initial Number of Data Points 𝐼0, Number of Queries

𝑁𝑄, Active Learning Method List 𝐴𝐿𝐴𝐿𝐿

Output: vector of means and standard deviations for each method in 𝐴𝐿𝐴𝐿𝐿.

1 Pick an untrained model 𝑓𝑅.

2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐶𝑀𝐸𝐴𝑁 and 𝐶𝑆𝑇𝐷 as empty lists.

3 for 𝐴𝐿 in 𝐴𝐿𝐴𝐿𝐿 do

4 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝐶𝐸
𝐴𝐿 as an empty list.

5 for 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ 𝑚𝑜𝑑𝑒𝑙 𝑓𝐺𝑇 in 𝑇𝑎𝑏𝑙𝑒 5.1 do

6 for 𝑖 = 0 to 𝐸 do

7 𝑋𝑎𝑙𝑙 ← Data_Generator(v, 𝑀𝑎𝑥𝑣, 𝑀𝑖𝑛𝑣, 𝑆𝑣).

8 𝑋𝑄𝑢𝑒𝑟𝑦 ← randomly sample 𝐼0 data points from 𝑋𝑎𝑙𝑙.

9 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑋𝑇𝑅𝐴𝐼𝑁 , 𝑌𝑇𝑅𝐴𝐼𝑁 , 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 as empty matrices.

10 for 𝑗 = 0 to 𝐼 do

11 𝑌𝑄𝑢𝑒𝑟𝑦 ← 𝑓𝐺𝑇 (𝑋𝑄𝑢𝑒𝑟𝑦).

12 Append 𝑋𝑄𝑢𝑒𝑟𝑦 to 𝑋𝑇𝑅𝐴𝐼𝑁 and 𝑌𝑄𝑢𝑒𝑟𝑦 to 𝑌𝑇𝑅𝐴𝐼𝑁 .

13 Train 𝑓𝑅 on 𝑋𝑇𝑅𝐴𝐼𝑁 .

14 𝑦𝑅 ← 𝑓𝑅(𝑋𝑎𝑙𝑙).

15 𝑦𝐺𝑇 ← 𝑓𝐺𝑇 (𝑋𝑎𝑙𝑙).

16 𝐴𝑐𝑐 ← 1
𝑃

∑︀𝑃
𝑛=1 𝛿(𝑦𝐺𝑇,𝑛 == ˆ𝑦𝑅,𝑛) where 𝑃 = length of 𝑦𝐺𝑇

17 Append 𝐴𝑐𝑐 to 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖.

18 𝑋𝑄𝑢𝑒𝑟𝑦 ← Proposer(𝑓𝑅, 𝑋𝐴𝐿𝐿, 𝐴𝐿, 𝑁𝑄)

19 end

20 Append
∑︀𝐼

𝑛=1𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖,𝑛 to 𝐶𝐸
𝐴𝐿.

21 end

22 end

23 Append 𝑀𝐸𝐴𝑁(𝐶𝐸
𝐴𝐿) to 𝐶𝑀𝐸𝐴𝑁 .

24 Append 𝑆𝑇𝐷(𝐶𝐸
𝐴𝐿) to 𝐶𝑆𝑇𝐷.

25 end

26 return 𝐶𝑀𝐸𝐴𝑁 , 𝐶𝑆𝑇𝐷

51

To test the active learning strategies for robustness, we ran Algorithm 4. The

inputs that we used for testing each active learning strategy’s robustness are shown

in Table 5.5.

Input Name Value

Number Experiments 100

Number Iterations 50

N dimensions 2

Minimum Range values [-100,-100]

Maximum Range values [100,100]

Stepsizes values [10,10]

Initial Number of Data Points 3

Number of Queries 1

Active Learning Method List [Smallest Margin, Entropy, Random]

Table 5.5: Active Learning Robustness Test Inputs

The results from our experiments are shown in Table 5.6 and key findings are

mentioned in Section 5.5.

Strategy 𝐴𝑟𝑒𝑎𝐺𝑃 𝑆𝑡𝑑𝐺𝑃 𝐴𝑟𝑒𝑎𝑁𝑁 𝑆𝑡𝑑𝑁𝑁

Smallest Margin 46.5470 1.2976 47.5146 2.5976

Entropy 46.5271 1.3364 47.3719 2.5857

Random 45.3844 1.6100 45.8832 2.4247

Table 5.6: Results for Active Learning Robustness Testing

Once again, we provide a boxplot visualization in Figure 5-3 to show how the area

under the accuracy curve differs from the standard deviation.

52

Figure 5-3: This graphic displays the average area under the accuracy curve for the
Gaussian Process Classifier and Neural Networks, the corresponding active learning
methods, and the one standard deviation above up to 50.0 and below.

5.5 Key Findings

To reiterate, the objectives of these experiments were to answer the following ques-

tions:

∙ What is the most robust machine learning model?

∙ Does active learning help in this thesis?

∙ If more than one active learning method does help, which one is the

best?

As a result of running these experiments, we derived the following key findings:

1. The Gaussian Process Classifier was the more robust nonlinear model for clas-

sification. The standard deviation of the area under the accuracy curve for the

Gaussian Process Classifier was 53% of the Neural Networks’ standard devia-

tion.

2. We found that active learning does consistently help with Gaussian Process

Classifiers but there are a couple nuances with respect to using them with

neural networks. Neural networks had the least variation in performance with

the "random" method but better average area under the accuracy curve for

53

the active learning strategies. We see that active learning actually biases the

neural network into creating non-robust boundaries which is consistent with [2].

Therefore, in the case of neural networks, there is a potential trade-off when

using active learning since accuracy gains will be less consistent.

3. From the active learning experiment, we found that smallest margin was the

most robust active learning method for Gaussian Process Classifiers. This makes

sense since our evaluation metric is area under the accuracy curve and small-

est margin is better known for improving classification accuracy specifically

compared to entropy. [16] However, for neural networks, smallest margin was

actually the least robust active learning method. This returns us to the problem

of lacking a base of data prior to using active learning.

54

Chapter 6

Conclusion

6.1 Key Findings

Overall, we found that COAL was successful in achieving our objectives of achieving

robustness and accuracy gains superior relative to passive learning.

COAL can capture a wide variety of unknown nonlinear relationships.

In our robustness experiments, we train multiple nonlinear oracle models to determine

the robustness of models and active learning strategies. Despite the nonlinear nature

of these models, the active learning methods were able to adeptly identify the most

informative data points which made it possible for the machine learning models to

converge to the oracle model’s accuracy.

COAL implements active learning strategies that consistently outper-

form passive learning. In our experiments where we determine the effectiveness

of each active learning method, we found that active learning methods consistently

outperform passive learning methods with higher cumulative accuracy and lower stan-

dard deviation in performance.

6.2 Contributions

In this thesis, we:

1. Designed COAL, a system that allows users to leverage machine learning models

55

and active learning methods to query for informative data points.

2. Introduced the concept of synthesizing various nonlinear oracle models in order

to test the robustness and ability of active learning strategies and models.

3. Demonstrated that, based on a variety of hidden underlying oracle functions,

the Gaussian process classifier was a highly robust model for integration with

active learning strategies.

4. Demonstrated that, based on a variety of hidden underlying oracle functions,

the smallest margin active learning strategy was the most robust strategy for

improving Gaussian Process Classifier accuracy but had a tendency to bias

Neural Network models.

5. Demonstrated that regardless of the active learning strategy chosen, users should

highly consider implementing active learning strategies in their data gathering

processes to enjoy the almost consistent label savings that come with its appli-

cation.

6. Created an evaluation metric that is industry focused and will allow users to

identify the quality of their combination of machine learning model and active

learning strategy.

6.3 Future Work

In future work, there are multiple avenues that we could pursue in order to expand

on the current capabilities of COAL. The following three areas are where we believe

research will further add to the conviction of our system in COAL and improve the

robustness and accuracy of our approach.

1. Considering More Models: While we looked into how Gaussian process clas-

sifiers and neural networks behaved relative to the active learning strategies we

used, we would like to further confirm our belief that Gaussian process classifier

is the most robust model to be used in these active learning scenarios. Other

56

potential models include support vector machines and quadratic discriminant

analysis which are also models in machine learning literature known for adeptly

capturing nonlinear relationships.

2. Considering More Active Learning Strategies: Implementing and using

other active learning strategies was another area of interest that we wish to

pursue in future research. There are a variety of other methods for different

application scenarios. Given our current method and for single query processes,

expected model change [18] and expected error reduction [12] are two viable

strategies for COAL’s use case. Another area that we are also interested in

expanding into with COAL is the use of formal batch mode active learning

strategies. In cases where multiple queries are to be requested per iteration,

batch mode active learning takes in additional considerations that single query

strategies often do not in order to provide more robust baskets of data points

to query.

3. Considering Costs More Specifically: Given that COAL is a system geared

towards industry use, we found that often times, industry researchers are faced

with economic constraints. As a result, perhaps one of the most promising

future paths for our research is to integrate the costs for each variable. If we

assume that costs are linear as one uses more or less of a given variable, then we

can easily solve for the cheapest product solution via a simple linear program.

From here, COAL would be able to focus on an even smaller subsection of the

variable space than the pre-specified constraints which could result in faster and

more optimal results for industry users.

57

58

Bibliography

[1] Yuichiro Anzai. Pattern recognition and machine learning. Elsevier, 2012.

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Cur-
riculum learning. In Proceedings of the 26th annual international conference on
machine learning, pages 41–48. ACM, 2009.

[3] Shayok Chakraborty, Vineeth Balasubramanian, and Sethuraman Pan-
chanathan. Adaptive batch mode active learning. IEEE transactions on neural
networks and learning systems, 26(8):1747–1760, 2015.

[4] Bor-Chun Chen, Chu-Song Chen, and Winston H Hsu. Cross-age reference cod-
ing for age-invariant face recognition and retrieval. In European Conference on
Computer Vision, pages 768–783. Springer, 2014.

[5] Caner Hazırbaş. Captcha recognition with active deep learning.

[6] Daniel Joseph Hsu. Algorithms for active learning. 2010.

[7] IDIAP Research Institute. Mobio, 2010. Available from
https://www.idiap.ch/dataset/mobio.

[8] Aditya Khosla, Raffay Hamid, Chih-Jen Lin, and Neel Sundaresan. Large-scale
video summarization using web-image priors. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 2698–2705, 2013.

[9] Christine Körner and Stefan Wrobel. Multi-class ensemble-based active learning.
In European Conference on Machine Learning, pages 687–694. Springer, 2006.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[11] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[12] Nicholas Roy and Andrew McCallum. Toward optimal active learning through
monte carlo estimation of error reduction. ICML, Williamstown, pages 441–448,
2001.

59

[13] Conrad Sanderson and Brian Lovell. Multi-region probabilistic histograms for
robust and scalable identity inference. Advances in Biometrics, pages 199–208,
2009.

[14] Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden markov
models for information extraction. In International Symposium on Intelligent
Data Analysis, pages 309–318. Springer, 2001.

[15] Andrew I Schein and Lyle H Ungar. Active learning for logistic regression. Uni-
versity of Pennsylvania, Philadelphia, PA, 2005.

[16] Burr Settles. Active learning literature survey. University of Wisconsin, Madison,
52(55-66):11, 2010.

[17] Burr Settles and Mark Craven. An analysis of active learning strategies for
sequence labeling tasks. In Proceedings of the conference on empirical methods
in natural language processing, pages 1070–1079. Association for Computational
Linguistics, 2008.

[18] Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning.
In Advances in neural information processing systems, pages 1289–1296, 2008.

[19] Claude Elwood Shannon. A mathematical theory of communication. ACM SIG-
MOBILE Mobile Computing and Communications Review, 5(1):3–55, 2001.

[20] Simon Tong. Active learning: theory and applications. PhD thesis, Citeseer,
2001.

[21] Keze Wang, Dongyu Zhang, Ya Li, Ruimao Zhang, and Liang Lin. Cost-effective
active learning for deep image classification. IEEE Transactions on Circuits and
Systems for Video Technology, 2016.

[22] Jinlong Wu and Tiejun Li. A modified fuzzy c-means algorithm for collaborative
filtering. In Proceedings of the 2nd KDD Workshop on Large-Scale Recommender
Systems and the Netflix Prize Competition, page 2. ACM, 2008.

[23] Jun Zhang and Yixin Chen. Food sensory evaluation employing artificial neural
networks. Sensor Review, 17(2):150–158, 1997.

60

