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Abstract

This thesis describes the design and implementation of a system which allows users
to generate machine learning models with their own data while preserving privacy.
We approach the problem in two steps. First, we present a framework with which a
user can collate personal data from a variety of sources in order to generate machine
learning models for problems of the user’s choosing. Second, we describe AnonML, a
system which allows a group of users to share data privately in order to build models
for classification. We analyze AnonML under differential privacy and test its perfor-
mance on real-world datasets. In tandem, these two systems will help democratize
machine learning, allowing people to make the most of their own data without relying
on trusted third parties.

Thesis Supervisor: Kalyan Veeramachaneni
Title: Principal Research Scientist

3



4



Acknowledgments

First and foremost, I have to thank my family: my parents, Luke and Lisa, and my

sister Lee; may I someday escape her shadow. Everything I accomplish is a testament

to my upbringing—the values they instilled in me, the support they showed me, and

the passions they encouraged me to follow.

I need to thank my advisor, Kalyan. When I first approached him, a year and a

half ago, I didn’t know what I wanted to study, and I was unsure whether research

was right for me at all. He not only offered guidance, but inspiration, encouragement,

and most generously, time. When I launched headlong into a project that was outside

either of our comfort zones, he jumped in right after me. When I was woefully behind

on my first paper, deadline looming, he pulled an all-nighter along side me. And

towards the end of the year, when the project wore me down, he reminded me why

I cared in the first place. He has taken every opportunity to go above and beyond,

and I can’t thank him enough.

Thank you to MIT and Course VI, for five stressful, exhilarating, formative years.

Thank you to Anne Hunter and the undergraduate office, the heroes we need but

don’t deserve. Thank you to the undergraduate community: I’ve never met a more

interesting, inspiring group of people. In particular, thanks to the residents of Senior

Haus—for being yourselves, and for showing us that we could do it too. And thanks

to all my friends on Burton Third. Without you, I might have had more sleep, but I

would not have had such a home.

5



6



Contents

1 Introduction 15

1.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Related work 19

2.1 Personal data processing . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Data privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Differential privacy . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Democratizing Machine Learning 23

3.1 The machine learning pipeline . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Data processing . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.4 Feature engineering . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.5 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 A framework for personal machine learning . . . . . . . . . . . . . . . 29

4 AnonML 33

4.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Anonymous data exchange 39

5.1 Anonymous Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7



5.2 Anonymous verification . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Learning with AnonML 45

6.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Building a model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Data Privacy 49

7.1 Feature preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Feature binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2.1 Privacy preserving median estimation . . . . . . . . . . . . . . 52

7.3 Locally-private histogram release . . . . . . . . . . . . . . . . . . . . 52

7.3.1 Random response . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3.2 RAPPOR – Bitwise perturbation . . . . . . . . . . . . . . . . 54

7.3.3 (𝑝, 𝑞)-perturbation . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3.4 Error correction and minimization . . . . . . . . . . . . . . . . 55

7.4 Privacy Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Results 61

8.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.1.1 EdX: predicting dropout . . . . . . . . . . . . . . . . . . . . . 61

8.1.2 Census: predicting salary . . . . . . . . . . . . . . . . . . . . . 62

8.2 Comparison with traditional methods . . . . . . . . . . . . . . . . . . 62

8.2.1 Performance with privacy . . . . . . . . . . . . . . . . . . . . 63

8.3 Optimal partition classifiers . . . . . . . . . . . . . . . . . . . . . . . 65

8.4 Tuning parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9 Discussion 71

9.1 AnonML performance . . . . . . . . . . . . . . . . . . . . . . . . . . 71

9.2 Differential privacy and anonymity . . . . . . . . . . . . . . . . . . . 72

9.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9.3.1 Personal machine learning applications . . . . . . . . . . . . . 73

9.3.2 AnonML applications . . . . . . . . . . . . . . . . . . . . . . . 75

8



9.3.3 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A Proofs 77

9



10



List of Figures

3-1 The machine learning pipeline, and how our framework interacts with

it. Functional units are on the left hand side, and the data represen-

tations they produce are on the right. . . . . . . . . . . . . . . . . . . 30

4-1 The basic machine learning pipeline. Data flow from left to right. Each

circle represents a stage in the pipeline where data is transformed. . . 35

4-2 The machine learning pipeline with AnonML. Data flow from left to

right. The aggregator dictates an instancer and a featurizer (yellow),

which the peers use to transform their data (red) on their own ma-

chines. AnonML adds a new step, perturbation (blue), wherein peers

privatize data before sharing with the aggregator. Finally, the aggre-

gator performs learning on private feature vectors collected from the

peers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5-1 A group of semi-trusted peers form an anonymous network. Onion

routing provides anonymity, and tokens or ring signatures allow veri-

fication. The aggregator can tell which packets come from within the

group, but not whom they are from. . . . . . . . . . . . . . . . . . . . 41

6-1 Partitioning the feature matrix. In this example, there are 𝑚 = 6

features total and 𝑛 peers. The aggregator splits the group into 𝑘𝑝

horizontal partitions, and then requests 𝑘ℎ subsets of 𝑘𝑠 features each

from each peer. Each vertical partition includes the label. . . . . . . . 46

11



7-1 Optimal 𝑝 and 𝑞 as a function of variable cardinality. 𝑝𝑚𝑖𝑛 and 𝑞𝑚𝑖𝑛

are the values for 𝑝 and 𝑞 which minimize expected error for a given

cardinality 𝑚. As 𝑚 grows, 𝑝𝑚𝑖𝑛 approaches 1
2
. The dashed lines

show the equivalent perturbation probabilities under basic one-time

RAPPOR. Here, we have fixed 𝜖 = 1. . . . . . . . . . . . . . . . . . . 57

7-2 Expected type estimate error as a function of 𝜖 and 𝑚 at 𝑛 = 10, 000

peers. On top, 𝑚 = 16; on the bottom, 𝜖 = 1. . . . . . . . . . . . . . 58

8-1 Comparison of AnonML with other ensemble learning methods on un-

perturbed data. These tests used five partitions, three features per

subset, and as many non-overlapping feature subsets as possible. . . . 63

8-2 Performance as a function of 𝜖𝑇 on different datasets. All experiments

are mean values from 500 trials. Note that the performance curves for

the EdX datasets, 3.091x and 6.002x, tend towards their asymptotes

much more quickly in 8-2b than in 8-2a. The curve for the Census

dataset is nearly identical in both. . . . . . . . . . . . . . . . . . . . . 64

8-3 Model performance response to the number of horizontal partitions,

𝑘𝑝, with 3 features per subset. All ROC/AUC values are the mean of

400 trials. For this trial, peak performance was achieved between 8

and 16 partitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8-4 Model performance response to the number of features per subset, 𝑘𝑠,

with 5 horizontal partitions. All ROC/AUC values are the mean of

400 trials. For this trial, peak performance was achieved at 𝑘𝑠 = 3 in

the lower-privacy settings; in the high-privacy setting, 𝑘𝑠 of 1 to 3 were

nearly identically performant. . . . . . . . . . . . . . . . . . . . . . . 67

8-5 Model performance response to the number of features per subset, 𝑘𝑠,

with 20 horizontal partitions. All ROC/AUC values are the mean of

400 trials. For this trial, overall peak performance was achieved at

𝑘𝑠 = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

12



List of Tables

3.1 Summary of data structures used by our framework. . . . . . . . . . . 25

3.2 The inputs and outputs of functional units in our framework. The

Phase column indicates at which phase of the machine learning pipeline

each processor operates. . . . . . . . . . . . . . . . . . . . . . . . . . 32

13



14



Chapter 1

Introduction

In 2005, two years before the first iPhone was released, an influential paper by Ea-

gle and Pentland declared that the preceding decade had been “[that] of the mobile

phone” [18]. At that time, the world-wide web was eleven years old and still growing

fast. Mobile sensors were getting smaller, cheaper, and more accessible by the year,

and mobile phone sales had begun to outpace sales of personal computers. Their work

highlighted the fact that phones were driving a new phenomenon: constant, passive

data collection by millions of people around the world. They showed that the data

gathered by hand-held electronics was enough to “recognize social patterns..., infer re-

lationships, identify socially significant locations, and model organizational rhythms.”

Already, it was clear that these devices, and the information they generated, would

bring about a new era of empirical analysis.

In the years that followed, the amount of data collected by electronic devices

continued to grow in breadth and depth. In 2009, Pentland returned to the subject

in an article for the World Economic Forum [46]. He described an emerging “global

nervous system” of electronic sensors and telecommunication devices:

It seems that the human race suddenly has the beginnings of a working

nervous system. Like some world-spanning living organism, automobile

traffic systems, security sensors, and especially mobile telephone networks

are all becoming intelligent, reactive systems with sensors serving as their
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eyes and ears.

Today, there is little doubt that the technological underpinnings for such a nervous

system are in place. If 1995-2005 was the decade of the mobile phone, 2007-2017 has

been the decade of the smartphone. There were over 3.5 billion mobile broadband

subscriptions globally in 2016. This year, 44% of the world is expected to own a

smart phone, and those numbers will continue to grow [19]. A typical smartphone is

equipped with:

– high-speed internet via LTE and WiFi,

– an always-on GPS radio,

– a gyroscopic sensor and accelerometer for determining orientation and move-

ment, and

– an HD video camera and microphone (or several).

Device owners carry this bundle of sensors with them wherever they go. In addi-

tion, most consumers rely on dozens of internet-connected services for entertainment,

communication, and to help them manage their daily lives. The result is that, for

hundreds of millions of people, the following data are nearly always being recorded

somewhere:

– regular measurements of location;

– any purchases made through online marketplaces or in brick-and-mortar stores

with a phone or credit card;

– any communications made over SMS, email, or messaging apps;

– any media consumed with an electronic device, including music, movies, e-

books, and web pages;

– any queries to a search engine or a personal voice assistant.
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The sum of this data is highly sensitive and powerfully revealing. Who owns this

data, who can access it, and what they can do with it are some of the major questions

for our time.

1.1 Machine learning

In this thesis, we focus on the domain of machine learning. Over the past two decades,

machine learning tools have become more powerful, more accessible, and easier to use.

It has been applied to the ever-growing troves of personal data collected by the “global

nervous system” with great success.

A dominant paradigm for machine learning today involves a central data-holding

authority that has extensive, exclusive access to data from a large number of users.

A few large authorities – corporations, universities, and government institutions –

control the collection and storage of vast amounts of sensitive personal data. These

organizations are able to build whatever models they want with the data they have,

and use those models however they like.

This paradigm limits who can use machine learning and what they can use it for,

and it tends to disenfranchise the subjects of the data. Users who don’t want to

share data with one of these organizations may not be able to access all the machine-

learning powered products and services they’d like. Entities without access to a large

data-gathering apparatus – e.g. researchers, small companies, and normal people –

have a much harder time gathering enough data to train certain kinds of models. And

often, once shared, a user’s data escape their control.

An unfortunate corollary to this paradigm is that every step of the machine learn-

ing pipeline, from data acquisition to model generation, is normally handled by the

same authority. This means that a user must be willing to trust such an author-

ity with large amounts of raw data if they want to contribute to training a model.

As we will describe in chapter 3, only a small, processed subset of a user’s data

is necessary to train any given model. If users are able to perform data cleaning

and feature processing on their data by themselves, they can contribute to machine
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learning datasets without revealing as much information. And, as we will demon-

strate, local preprocessing makes it possible for users to perform privacy-preserving

transformations before sharing data.

We attempt to address these issues with two contributions. First is a framework

that enables users to clean, aggregate, and learn with their own data locally. Second is

AnonML, a system that lets users participate in privacy-preserving machine learning

with an untrusted aggregator. AnonML builds on and fits into our framework. With

AnonML, users of our framework can collaborate to train models of their choosing

that they could not build alone, even if they do not trust one another.

This thesis is organized as follows: Chapter 2 summarizes related work. Chapter

3 describes the machine learning pipeline and introduces our framework. Chapter

4 introduces AnonML. Chapter 5 sketches out AnonML’s network communication

backbone. Chapter 6 describes AnonML’s data collection setup and learning process.

Chapter 7 discusses privacy-preserving data sharing techniques. Chapter 8 presents

our experimental design and the results we achieved. Finally, chapter 9 draws con-

clusions and suggests future work.

18



Chapter 2

Related work

A great deal of recent work has focused on how to make machine learning more acces-

sible and more private. In this section we give a brief overview of related literature.

2.1 Personal data processing

The idea of a personal data store has existed in academic literature for some time

[3, 7, 42]. In recent years, new revelations about digital surveillance have brought the

issues of privacy and data equity to the forefront [21], and researchers have pursued

privacy-preserving personal data solutions with renewed zeal. OpenPDS is a proposed

system that would enable users to store their personal data and metadata in a “black

box,” and selectively answer queries about the data based on a set of user-defined rules

[11]. Another platform, Databox, acts as a hub for a variety of digital data sources

and collates personal data to improve availability [24]. Unfortunately, attempts build

systems that people actually use have largely failed to gain traction.

OpenPDS and others attempt to be general solutions: platforms which are both

data- and application-agnostic. A developer can use OpenPDS to collect nearly any

kind of personal data, and once the data is collected, OpenPDS’s data-access interface

supports nearly every type of application. However, there is a chicken-and-egg prob-

lem blocking such a system’s actual adoption. App developers have little incentive

to build around a new system without user demand, and consumers are unlikely to
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demand software that uses a personal data store without seeing examples of it in the

marketplace. In our opinion, the main obstacle to the widespread adoption of such a

data store is a lack of concrete applications. Developers and consumers have proven

unlikely to adopt platforms when they are not sure what they should use them for.

Our system targets a particular use case: machine learning. Rather than build

a one-size-fits-all solution for personal data management, we have chosen to strike a

balance between specificity and generality. As described in chapter 3, our contribu-

tions focus on two weak spots in the pipeline from data collection to machine learning

model generation: data collation and private data sharing. We present a framework

for merging personal data from multiple sources into one dataset and a simple API

that developers can use to prepare that data for machine learning.

2.2 Data privacy

There is a rich tradition of research into privacy-preserving data collection and pro-

cessing techniques. Random Response, first invented by Warner in 1965 [52] and

improved by Greenberg et al. shortly after [23], involves having individuals answer

questions incorrectly with some fixed probability. This technique gives each respon-

dent a kind of plausible deniability about their answers, and can be useful for sensitive

questions like “Are you a member of the communist party?”

Post-randomization (PRAM) refers to a similar technique applied in a central-

ized setting, after unperturbed data has been collected [22]. The effects of PRAM

have been studied in a number of data-analysis related contexts, including the utility

of PRAM-perturbed joint type estimates [39] and the potential for training logistic

regressions on data after PRAM [53]. These are relevant to us because our local per-

turbation method is based on random response, and the resulting datasets resemble

those perturbed with PRAM.
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2.2.1 Differential privacy

Since its introduction in 2006, differential privacy has become a de facto standard

for privacy-preserving data release [14, 17]. In general, differential privacy can be

assessed in two settings: global, where a trusted central authority collects real data,

then releases it in a privacy-preserving manner, and local, where there is no such

authority, and each user releases a privatized version of their own data. We are

concerned with the local setting.

A great deal of work has focused on how a trusted data-holding authority can

generate or sanitize models for privacy-preserving release in the global setting [8,

45, 51]. A parallel line of work has focused on how an untrusted data scientist can

perform analysis and build models over privacy-protected datasets, e.g. using a series

of differentially-private queries to a trusted authority [31, 32].

We are interested in the case where users are not willing to share raw data with

any trusted authority, or where a trusted authority (like a corporation) with whom

users have shared data is not willing to offer any kind of access to third parties.

Therefore we focus on the local setting.

One related line of work is private multiparty machine learning, where multiple

data-holding parties would like to build a model without directly sharing data [44,

26, 25]. Authors consider a setting in which each party posesses a local classifier

based on private data. A group of data-holding parties can then combine their local

classifiers into a more powerful ensemble using local differential privacy. We want

to accommodate the case in which a user can generate features, but does not have

enough information to train a classifier locally.

Our system uses locally-private histogram estimation for data sharing. RAPPOR,

by Erlingsson et al, addresses a version of this problem [20], and our data sharing

mechanism is based on their proposal. In particular, we are interested in choosing

private disclosure mechanisms that minimize expected type estimate error for a fixed

set of parameters. In a similar vein, Kairouz et al proved the optimality of certain

local perturbation methods with respect to any 𝑓 -divergence utility function [33].
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Their results, including that random response is optimal in the low-privacy regime,

do not seem to map to our domain directly. So far, we have not applied the same

theoretical rigor to optimizing histogram estimation as Kairouz, but doing so may be

warranted in the future. Other work on private histogram estimation has focused on

heavy-hitters [2]. We have considered this as a way to improve AnonML’s models,

but have not explored it yet.

2.2.2 Cryptography

Some recent work has focused on machine learning or general computation over en-

crypted data, either with secure multiparty computation (MPC) or fully homomorphic

encryption (FHE) [6]. Recently, Google deployed a new system for assembling a deep

learning model form thousands of locally-learned models while preserving privacy,

which they call Federated Learning [41, 5]. On their own, these mechanisms do not

provide guarantees about the privacy of their outputs.

Others have attempted to use multiparty computation with differential private

mechanisms to produce globally-private answers to queries in the absence of a trusted

central authority. An early proposed system by Dwork [15] uses MPC and distributed

Laplacian noise generation to allow a group of users to answer counting problems

about their personal data with differential privacy.

These solutions are powerful, but they have high communication and computa-

tion costs, or they are optimized for specific use cases. As technology improves and

computation and bandwidth continue to get cheaper, FHE- and MPC-based solutions

may become more viable for general machine learning. However, we believe that the

best way to approach practical private classifier generation in 2017 is by sharing and

computing on plain-text data.
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Chapter 3

Democratizing Machine Learning

One of our primary goals in this thesis is to take steps towards democratizing ma-

chine learning: making it simpler, more accessible, and more equitable. Great leaps

have been made towards these ends in the past few years, both in the literature

and elsewhere. Thanks to open source libraries, open datasets, and excellent on-

line courseware, it is easier for an amateur software developer to learn, practice, and

deploy machine learning solutions than ever before.

However, it remains difficult for the same amateur to perform learning on the

data that he has created. Although most Americans’ lives generate vast amounts of

data each day, even those who are technically proficient do not have an easy way of

putting that data to good use. Our contribution in this chapter is a framework that

aims to democratize machine learning for personal data.

First, we summarize the stages through which an aspiring data scientist must

shepherd her data on its way to becoming a useful machine learning model. We

define a model to be a function, 𝑔 : 𝒳 → 𝒴 , which maps elements from a feature

space 𝒳 to a label space 𝒴 . A model is trained by fitting it to a set of training data,

comprising features 𝑋 and corresponding labels 𝑌 . We will expand on this pipeline

and describe how our proposed solution addresses each step in section 3.1.

1. Data acquisition: Raw data is collected, or retrieved from a data source, in a

machine-readable format.
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2. Data processing: Raw data is “cleaned” and converted to a format fit for

feature engineering. Cleaning may include parsing keywords and numbers from

raw text, removing redundant or useless information, and applying strong typing

to individual values.

3. Problem definition: Once the available data has been assembled and orga-

nized, the data scientist defines a problem. In practical terms, this amounts to

defining the entity for the problem, the label space, 𝒴 , and a means of extracting

a label, 𝑦 ∈ 𝒴 , from training data pertaining to a single entity.

4. Feature engineering: Features are values which the learned function 𝑔 will

use to predict the label – the inputs to 𝑔. Features may be raw values directly

from the dataset, or may be computed via complex functions on the input data.

Feature engineering defines the function’s input space, 𝒳 , as well as a way to

extract a feature vector 𝑥 ∈ 𝒳 from training or test data pertaining to a single

entity.

5. Learning: Finally, a function that maps the feature space to the label space

is “trained.” This is usually achieved by passing a large set of (feature vector,

label) tuples, called training examples, into a learning function. This function

uses the training examples to iteratively update a set of parameters which define

the discriminatory function 𝑔.

Most research has focused on optimizing step 5: learning. Traditionally, “machine

learning research” has referred to this part of the problem, and there is far too much

literature in the area to list here. Recently, significant work has been done towards

automating step 4 by programmatically searching spaces of possible features for the

best options [35]. Some research [48] has attempted to move towards automating

step 3, but for the most part, problem definition remains the domain of human

intuition. Steps 1 and 2, furthest removed from the model-building process, are

not frequently thought of as machine learning problems. Though they are simple,

repetitive tasks, data acquisition and cleaning are normally handled by ad hoc, single-

purpose solutions.
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In the next two sections, we examine each stage of the pipeline in more detail. We

propose a framework with which amateur data scientists can transform personal data

from its raw source to a machine learning model, and explain how the framework fits

in to each stage of the pipeline. In section 9.3.1, we describe some potential uses for

and expansions to our framework.

3.1 The machine learning pipeline

Structure Description

Field A single, measured value, and the most basic unit of data. A
field has a static type, such as float, boolean, or categorical.
After initialization, its value is immutable.

Event A single unit of measured data. An event comprises a set of
fields and an optional timestamp. An event can represent a
single measurement from a sensor (like a thermometer reading),
a static property (like street address), or a real-world event (like
a click or a ride-sharing trip). If an event represents a static
property not associated with a time, its timestamp is left as
null.

Dataset A set of events belonging to a single user in a specific time
interval. A dataset can contain events from many different data
sources. If a dataset contains data pertaining to a single training
example, it is referred to as an instance dataset. Feature and
label computation are executed directly on datasets.

Feature Vector A set of fields which meaningfully describe a single instance.
The fields are features, the inputs to the model function.

Label A field corresponding to a single instance; the value which the
model will try to predict.

Feature Matrix A set of feature vectors and their corresponding labels. A feature
matrix can be passed directly into a learning algorithm to train
a model.

Table 3.1: Summary of data structures used by our framework.
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In this section we examine each step in the machine learning pipeline and de-

scribe how our framework fits in. Table 3.1 describes the data structures used by the

framework.

3.1.1 Data acquisition

The first step in the pipeline is to gather data from multiple sources so that they may

be processed together. Logically, a data source is an app or service that collects data

about a user and exposes it via some software interface. Some sources, like Google’s

Gmail and Maps, make it easy to download user data in a software-accessible format.

Others, like Uber and Facebook, are less accommodating. For example, Uber does

not have a web API, but it does have a ride history page that users can access on

its website. In order to use uber as a data source, we found it necessary to use an

html-parsing script (“web scraper”).

Data collected from a source may be messy, redundant, or unformatted. These

inconsistencies will be corrected in the next stage of the pipeline; the important thing

is that data is all in one place.

3.1.2 Data processing

Each data source exports data in a different format, and data from different sources

likely aren’t compatible by default. However, all sources contain information about a

single entity – the user. Our goal is to enable the user to leverage all of the information

he or she has available for machine learning. In order to do so, data from multiple

sources must be coerced into a single format and collated.

We present a simple, generic format for feature engineering. In our system, all

data is converted into a series of time-stamped events. Each event contains one or

more primitive values, called fields. Many events make up a dataset. Our framework’s

data structures are summarized in table 3.1.

Each data source must be coerced into the field-event-dataset format via an im-

porter. The author of the importer for a particular data source must make decisions
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about which data is relevant, which is not, and how to convert dense data like raw

text and images into events and fields.

This is similar to the process every data scientist must go through when working

with a new data source: raw data must be processed and simplified in order to

prepare it for feature engineering. However, once an importer for a data source has

been written once, it can be used by everyone with access to the same type of data.

We imagine a large, community-generated library of importers, wherein popular apps

and services will tend to receive more robust support. When a user installs a new

app, she can install an importer for its data at the same time, and the app’s data will

be seamlessly integrated into her personal dataset.

3.1.3 Problem definition

Once raw data has been cleaned and processed into a dataset, it is time to define a

problem. In our context, defining a machine learning problem amounts to defining

an entity and a label. The label is a property or event that the resulting model

will attempt to predict, and the entity is the person, event, or thing that the label

describes.

First, the user needs to break her dataset into training examples. Each training

example is a subset of the data which describes a single instance of the entity in

question, and from which a single label can be derived. Training examples manifest

as datasets which are subsets of the global dataset, or instance datasets.

Second, the user needs to compute a label for each training example. The label

can be any value that is derived from a training example and is expressible as a single

field. In our framework, the user executes this phase with an instancer. As described

in table 3.2, the instancer accepts a dataset, and returns a list of labels and training

example data-subsets.

We describe two examples of problem definitions below:

1. Ride-share pricing : Suppose a user wants to predict what the price of a ride-

share trip from point A to point B will be at some time in the future, perhaps
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to plan their commute. The user has access to data about several hundred rides

she has taken in the past and what they cost. The entity in this case is a ride,

and the label is the price.

2. Farm equipment failure: Suppose a farmer has an irrigation system set up on

his land, with several sprinklers that are turned on and off depending on the

weather. He has a meter on each one that logs how much water is flowing

and when, and he can use the data to detect when pipes burst. He wants to

predict when a pipe is likely burst so that he can perform maintenance before

it happens. He may formulate a problem like, “Given historical data about a

pipe, how likely is it to burst in the next week?”

The entity is a pipe-week. The instancer in this case would create separate train-

ing examples for each pipe, for each week. The label is a number representing

probability of failure.

In general, problems for which each user has access to lots of labeled training

examples, like those above, are preferable. However, there are many problems for

which a single user does not have access to enough data to train a model on their

own. Many of these are problems in which the user is the entity, and so can only

generate a single training example. For example, a person may want to predict

whether he will pass a particular MOOC class, or how likely he is to secure a loan

from a major bank. To model these problems, it is necessary for users to share data

with each other. In section 4, we present a general solution for these cases.

3.1.4 Feature engineering

A feature is a value that a machine learning model accepts as input in order to predict

its output: the label. Once a data scientist has defined a problem, they must define a

set of features which they believe will lead to the best predictive power for their model.

In our system, each feature is defined as a feature function which acts on a dataset

and returns a single field. The dataset passed to the function must be associated
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with a single instance of the problem’s entity. The set of all features pertaining to an

instance is a feature vector.

To define a set of features and a label for a problem, a data scientist using our sys-

tem writes a featurizer. The featurizer accepts a list of training examples – (instance

dataset, label) tuples – as input, and returns a list of feature vectors as output. In

the notation used above, 𝑋 comprises the feature vectors, and 𝑌 the list of labels.

The full set of feature vectors and labels is called a feature matrix.

3.1.5 Learning

After raw data have been transformed into a feature matrix, learning can begin.

The goal of learning is to transform a set of observations into a functional model for

predicting unobserved traits or events. Machine learning makes the assumption that

the values in 𝑋 and 𝑌 are drawn from dependent distributions, 𝒳 and 𝒴 , such that

knowing an instance’s feature vector 𝑥 allows one to reliably predict its label 𝑦.

At this point, the data scientist has a full set of observations drawn from 𝒳 and

𝒴 , and needs to find a function, 𝑔, that will most reliably map some 𝑥 ∈ 𝒳 to the

correct 𝑦 ∈ 𝒴 in the future.

There are myriad learning algorithms and techniques, too many to describe in

detail here. At this point in the pipeline, most ambiguous choices have been made by a

human, and it’s possible measure a model’s performance with simple, low-dimensional

metrics. There are a number of tools [49, 4] which allow data scientists to select

the best learning algorithm and hyperparameters for any well-defined problem with

training data.

3.2 A framework for personal machine learning

We propose a framework to make the generation of predictive models as accessible

as possible. Our framework assumes that, for most users, data collection is already

taking place as a consequence of the dozens of apps and services that most consumers

use. We also acknowledge and embrace the fact that open-source and free-to-use

29



Figure 3-1: The machine learning pipeline, and how our framework interacts with it.
Functional units are on the left hand side, and the data representations they produce
are on the right.
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machine learning libraries have become extremely accessible and powerful in recent

years. We do not intend to replace tools such as scikit-learn or tensorflow;

rather, we want to help users work with them. Our goal is to streamline the process

of transforming data from whatever raw form they are collected in into a feature

matrix, ready to be fed to a machine learning algorithm.

Our framework is built around three functional units, which handle stages 2-4 of

the pipeline above. Table 3.2 summarizes the inputs and outputs of the units.

1. Importer: An importer is responsible for cleaning and processing raw data

from a data source. Each distinct data source requires its own importer. An

importer accepts raw data as input and converts it to a series of timestamped

events (collectively, a dataset).

2. Instancer: An instancer defines a prediction problem. An instancer defines a

function, make_instances(), which converts a dataset into a series of training

examples.

3. Featurizer: A featurizer is a wrapper around a set of feature functions. Each

feature function accepts a training example in the form of an event or dataset

and computes a single feature. The featurizer outputs a feature vector, a list of

features and a label, for each training example.

We start by observing that data collection and processing – stages 1 and 2 – are

independent of the latter half of the pipeline. Machine learning problem formulations

have a lot in common. If data can be coerced into the right intermediate represen-

tation, data scientists can build many different kinds of predictive models using the

same set of processed data. And if developers are able to start with data in a stan-

dardized format, they can jump right in to building models, focusing their efforts on

intuitive problem solving rather than writing boilerplate code.

We also note that most data sources are popular applications with widespread

adoption. Software for collecting and processing data should only need to be written

once per data source. In our framework, this task is handled by an importer. Around
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Processor Phase Input Output

Importer 2 Raw data from a data
source, like html, csv, or
mp4 files.

A list of timestamped events
as a dataset.

Instancer 3 A dataset with all training
data for a desired model.

A set of labeled training ex-
amples. Each training exam-
ple is represented as a dataset
(set of events) which pertains
to a single instance of the en-
tity.

Featurizer 4 A list of training exam-
ples.

A list of feature vectors. Each
feature vector contains a set
of features pertaining to a sin-
gle instance.

Table 3.2: The inputs and outputs of functional units in our framework. The Phase
column indicates at which phase of the machine learning pipeline each processor
operates.

the world, thousands of data scientists have written thousands of single-purpose “im-

porters” for the same few data sources; there is a great redundancy of work at this

stage in the pipeline. Data representation, described in table 3.1, is at the core of

our framework. By providing a standardized intermediate representation into which

data can be processed, we allow users to share their solutions for processing popular

data sources and, hopefully, to save great collective effort.
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Chapter 4

AnonML

In chapter 3, we described a typical machine learning pipeline, as well as our frame-

work for enabling learning with personal data. Some types of models can be trained

with the data available to a single user. For many problems, it may be possible, or

even desirable, to use data from only one person.

For other problems, data from multiple users are required. In particular, any

problem for which the entity is the user, such that each person can only generate one

training example, necessitates data sharing.

In this chapter, we introduce AnonML, a system which allows a group of peers

to share featurized data with an untrusted aggregator privately and anonymously.

AnonML extends the framework we presented in the previous chapter, and allows a

single data scientist to direct stages 3-5 of the pipeline for an ad-hoc group of data

holders.

4.1 Motivating example

Consider a Massive Online Open Course (MOOC): an online course with thousands

of students, such as one offered by EdX or Coursera. Each student watches lectures

online, completes homework assignments, and takes tests. As students interact with

the courseware, their computers collect and store thousands of data points [27].

In a MOOC ecosystem, there are multiple stakeholders - students, instructors,
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universities, and platform providers. Each stakeholder may be interested in using

student data to generate predictive models or classifiers, but the stakeholders are

likely to have different interests. Instructors may want to know who is likely to drop

out in the coming weeks; students may want to predict their chances of earning a

passing grade. The platform provider may want to predict what courses will interest

a particular student. And university policy makers are interested in what attributes

predict student retention and success.

The point is that each stakeholder needs access to different aspects of the data, but

the data generators (students) may trust different stakeholders to different degrees.

The central authority can generate models for herself and on behalf of others. She

can share parts of the dataset with other stakeholders, like universities or instructors,

but she is unlikely to share sensitive data with the students themselves.

In a traditional MOOC scenario, one authority, likely the course administrator,

has access to the entire dataset. She can choose to share data with other stakeholders,

like instructors or university researchers, or generate models on their behalf. Although

students generated the dataset, they don’t control who can access it or what is done

with it.

With AnonML, students are able to control their own data and put it to good

use. Since data are only ever released in a privacy-preserving manner, AnonML

makes it feasible for any student to propose a model and collect data from the rest

of the group. For course administrators and universities, AnonML minimizes risk

and reduces overhead. If models can be learned on private data, there is less need

to store sensitive personally-identifying information, and lesser risk associated with a

data breach.

4.2 System overview

AnonML enables an aggregator to collect data from a large group of data-holding

peers in order to construct a classifier.

We begin by noting that, in order to build a model, an aggregator only needs
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to collect featurized data. This means that raw data can be processed locally by

the peers for stages 1-4 of the pipeline, and data only has to be shared for stage

5. AnonML extends our local-learning framework. Peers who want to take part in

learning with AnonML are assumed to have a common set of data sources as well

as importers for those sources. The aggregator sends the peers an instancer and a

featurizer to use, and the peers compute feature vectors with their data on their

own machines (locally). Peers then share a handful of features and their label, rather

than any significant portion of their raw data, with the aggregator. The local learning

pipeline is shown in figure 4-1, and the pipeline with AnonML is illustrated in figure

4-2.

Figure 4-1: The basic machine learning pipeline. Data flow from left to right. Each
circle represents a stage in the pipeline where data is transformed.

Figure 4-2: The machine learning pipeline with AnonML. Data flow from left to right.
The aggregator dictates an instancer and a featurizer (yellow), which the peers use
to transform their data (red) on their own machines. AnonML adds a new step,
perturbation (blue), wherein peers privatize data before sharing with the aggregator.
Finally, the aggregator performs learning on private feature vectors collected from
the peers.
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The data shared by the peers are anonymous and differentially private, and the

aggregator does not need to be trusted. The set of peers in the group is known to

every peer in the group as well as the aggregator. After the group has been formed,

no information to identify any individual within the group should be associated with

any of the data points shared with the aggregator.

At a high level, AnonML works as follows:

1. Proposal: An aggregator proposes a classification problem for the group to

solve, along with an instancer and a featurizer. A group of peers who agree to

take part register their identities with the aggregator.

2. Local processing: Each of the peers computes a feature vector and a label

using the aggregator’s instancer and featurizer with their own data.

3. Perturbation: Each peer vertically partitions their feature vector into a set of

partial feature vectors. Each partial vector has a subset of the peer’s features

and their label. The peer then perturbs each partial vector using a probabilistic,

differentially private algorithm.

4. Sharing: For each partial feature vector, each peer generates a data packet

consisting of the vector and a verification token for that vector. The peer shares

each packet with the aggregator over a separate anonymous network connection.

5. Verification: The aggregator uses each data packet’s token to verify that it

was sent by a member of the group, and that no peer sent duplicate data.

6. Learning: The aggregator uses the set of perturbed data to generate synthetic

training examples for each partition. She trains a classification model on each

partition of the synthetic data. The models are combined into an ensemble

based on cross-validation scores.

AnonML can be thought of as two separate, complementary data-sharing tech-

niques. First is a system for anonymous data sharing among a number of trusted
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peers, as executed in steps 1, 4, and 5 above and described in chapter 5. This sys-

tem assumes nothing about the data being shared, and does not provide differential

privacy on its own.

The second is a differentially private method for releasing low-dimensional, discrete

feature vectors, as executed in step 3 and described in chapter 7. The differential

privacy of the system does not depend on anonymous communication: AnonML’s

theoretical guarantees are the same regardless of how peers choose to share their

data with the aggregator. However, in chapter 9 we argue that the two techniques –

anonymous communication and differentially-private perturbation – complement each

other, and using both in combination serves to reduce the risk of privacy breaches

more than either one could on its own.

Finally, we present a simple method by which an aggregator can use data shared

with AnonML to train an ensemble classifier: step 6. In chapter 8 we test our method

on real-world datasets, discuss performance with variable parameters, and describe

our results.
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Chapter 5

Anonymous data exchange

The networking aspect of AnonML allows peers in the group to communicate with

the aggregator pseudo-anonymously. Here we describe the technical backbone of the

AnonML peer-to-peer network.

In AnonML, when the aggregator receives a message, she must be able to verify

that the message is indeed from one of the peers in the network, but must be un-

able to further narrow down the set of peers it came from. These are two separate

requirements. The first, anonymity, ensures that nobody can tell from whom in the

group a particular message was sent. The second, verifiable membership, ensures that

the aggregator can verify that each message was sent by a legitimate peer from the

group.

5.1 Anonymous Routing

To satisfy anonymity, any peer in the network must be able to send network packets

to any other without leaking any identifiable information to the receiving party.

Anonymous network communication without a central authority was introduced

by Chaum in 1981 [9], and the basic concept has been adopted into onion routing and

TOR, the most popular anonymization network in the world today [47, 12]. Onion

networks allow a client to establish an anonymous, two-way connection to any server

at any time.
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An onion network consists of a large group of peers, known as relays, who publish

their public encryption keys. Using an onion network, a client may establish an

anonymous connection, known as a "circuit," to any server via the network at any

time; the client and server do not have to be relays in the network in order to use it.

The server can respond to queries from the client without knowing anything about

the client’s identity. A simplified version of the protocol a client would follow to send

an anonymous request to a server is described below.

1. The client chooses a sequence of 𝑘 relays in the network, {𝑟1, ..., 𝑟𝑘}, identified

by their IP addresses. This is the path the client’s traffic will follow on its way

to the server, known as a circuit.

2. The client encrypts the message it wants to send in the key of the server. It then

concatenates the encrypted message, 𝑀𝑒𝑛𝑐, with the address of its destination

server, 𝑑𝑒𝑠𝑡, in the public key of the last relay, 𝑃𝑘. We’ll call this intermediate

message 𝑀𝑘 ← 𝐸𝑛𝑐(𝑃𝑘,𝑀𝑒𝑛𝑐|𝑑𝑒𝑠𝑡).

3. The client then encrypts 𝑀𝑘 and the identity of the last relay, 𝑟𝑘, in the public

key of 𝑟𝑘−1: 𝑀𝑘−1 ← 𝐸𝑛𝑐(𝑟𝑘−1,𝑀𝑘|𝑟𝑘). They encrypt 𝑀𝑘−1 in 𝑟𝑘−2’s key in the

same way. This continues until the client has generated 𝑀1 ← 𝐸𝑛𝑐(𝑟1,𝑀2|𝑟2).

4. The client sends 𝑀1 to 𝑟1, who decrypts it and sends 𝑀2 to 𝑟2, and so on.

Finally, relay 𝑟𝑘 receives 𝑀𝑘, decrypts the original message 𝑀𝑒𝑛𝑐, and sends it

to 𝑑𝑒𝑠𝑡.

At any given point in the circuit, each relay only knows about the relay just before

it and the one just after it; it has no way of knowing where the packet originally came

from or where it is eventually headed. As long as at least one of the relays in the circuit

is honest, onion routing prevents any number of malicious relays from compromising

a client’s anonymity.

Some onion networks, including TOR, are vulnerable to traffic frequency analysis

by adversaries with powerful monitoring abilities [10, 43, 30]. Traffic analysis attacks

involve monitoring the amount and timing of network traffic at source and destination
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Figure 5-1: A group of semi-trusted peers form an anonymous network. Onion routing
provides anonymity, and tokens or ring signatures allow verification. The aggregator
can tell which packets come from within the group, but not whom they are from.

nodes. Traffic analysis attacks work despite robust encryption. In our model, a traffic

analysis attack could involve an aggregator monitoring outgoing traffic from one peer

in an attempt to correlate the it with the incoming data packets it receives.

Here we observe that natural constraints on AnonML network traffic allow us

to provide more robust anonymity than standard onion networks can. Data flowing

through the AnonML network has a regular structure and schedule, and all peers are

responsible for sending data of the same structure to the aggregator at roughly the

same time. Therefore, traffic analysis attacks can be mitigated with slight modifica-

tions to the standard onion routing scheme.

First, peers should pad their packets such that all packets of similar data type are
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the same size. Second, packet delivery should be synchronized among peers. All peers

should send similar data packets to the aggregator within the same predetermined

time window. Finally, intermediate routing nodes should randomly stagger packet

delivery within a second time window. Suppose all peers send a similar packet within

a set time window, (𝑡𝑠, 𝑡𝑠 + 𝛿). If at least one routing node in each cascade staggers

packet forwarding such that every packet arrives at the aggregator during a second

window, (𝑡𝑠+ 𝛿, 𝑡𝑟), an adversary will be unable to correlate outgoing traffic from any

peer with incoming traffic to the aggregator.

5.2 Anonymous verification

Anonymous network communication presents a problem for the aggregator: if she

does not know where a given feature vector comes from, how can she be sure the

sender is part of the trusted group of peers? Additionally, how can she be certain

the same peer is not sending duplicate packets? To address these issues, we require

that AnonML peers send each message to the aggregator with a verification token

attached. The token must prove that the source of the message is someone from the

group without revealing additional information, and it must ensure that the same

peer cannot send duplicate messages to skew the aggregator’s results.

In a recent paper, Anonize [29], Hohenberger et al. propose a system for solving

the closely-related anonymous survey response problem. Anonize allows an authority

to select an ad-hoc group of users and create a “survey” where each user can anony-

mously submit exactly one response. The full details of the Anonize protocol are too

long to reproduce here, so we will give a high-level summary of its operation.

To administer a survey, Anonize requires two roles, a registration authority and a

survey authority. The purpose of the roles is to separate the privilege of administering

surveys from that of registering users. For the purposes of AnonML, the aggregator

acts as both authorities at once.

To begin, the each peer registers with the registration authority, committing to

a secret key with a public signature. The registration authority issues a master user
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token to each authorized peer in the group, which will be used to verify responses

later. The survey authority then publishes a set of survey IDs, one for each registered

user.

Each peer in the group then uses his survey ID and his secret key as inputs

to a deterministic hash function, and generates a single-use token, 𝑡𝑜𝑘. The peer

then generates a non-interactive zero knowledge proof, 𝜋, which proves that 𝑡𝑜𝑘 was

generated by some valid survey ID with some validated user’s secret key. The NIZK

also commits to a specific message, preventing. This is the verification token.

Each user only has one validated secret key and is only issued one survey ID per

survey. Since the hash function is deterministic, the user can only generate one valid

token per survey. Additionally, anyone in the group can verify that a user’s single-

use token is valid. It is computationally hard to determine which authenticated user

generated a particular token, and computationally hard to forge an illegitimate token.

The aggregator issues master user tokens to each peer in the group at the start of a

round of model generation. The aggregator also issues one survey ID to each peer for

each feature vector that she requests. In this way, peers are prevented from sending

duplicate responses, and parties outside the group are prevented from sending data

to the aggregator at all.
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Chapter 6

Learning with AnonML

Here we describe the structure of the data that an aggregator collects, and how that

data can be used to generate a classifier.

Terminology:

– An entity is the abstract object which the model will attempt to classify.

– A feature is a value that quantifies some property of an instance of an entity.

– The label is the value which the model will be trained to predict. Without loss

of generality, we assume a binary label.

– A discriminatory model is a mathematical function which accepts as its input

a set of features pertaining to an instance of the entity, and produces as its

output a prediction for the value of that instance’s label. When used in this

context, it is also referred to as a classifier.

Let’s return to our MOOC use case for an example. Suppose the administrator of

a class wants to train a model on last semester’s students which will predict, half-way

through next semester’s class, whether each student will eventually pass or fail. In

this case, the entity is a student. Some features may be variables like “age,” “hours

spent watching lecture videos,” and “average homework grade,” measured at the mid-

semester point. The label is a boolean variable which represents whether or not a

student passed the class. The resulting discriminatory model will accept as input
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features about a student’s performance and produce as output a predicted label of

“PASS” or “FAIL.”

Features, labels, and entities are defined by the aggregator. To define a new

problem, the aggregator creates an instancer and a featurizer and shares both with

the group. Each peer in the group must have data of the correct format to compute

the aggregator’s proposed features.

6.1 Data collection

Figure 6-1: Partitioning the feature matrix. In this example, there are 𝑚 = 6 features
total and 𝑛 peers. The aggregator splits the group into 𝑘𝑝 horizontal partitions, and
then requests 𝑘ℎ subsets of 𝑘𝑠 features each from each peer. Each vertical partition
includes the label.

46



Suppose that an aggregator has proposed a problem, and a group data-holding

peers have agreed to take part. Each peer has processed their local dataset with the

aggregator’s proposed instancer and featurizer. Without loss of generality, assume

each peer generates a full set of features corresponding to a single entity. In a real

world scenario, each peer may possess data for one instance or many, and may have

the data to generate all features for an instance or only a subset of all features.

Let 𝑛 be the number of peers in the group and 𝑘𝑓 the number of features held

by each peer. The total set of data present in the network can be thought of as

an 𝑛 × 𝑘𝑓 matrix, with each row corresponding to one instance and each column

corresponding to one feature. First, the aggregator splits the group of peers into

𝑘𝑝 equally-sized subgroups, which we’ll call peer partitions, using a shared source of

randomness. These are horizontal partitions of the dataset. The aggregator publishes

the list of peers (by public key or other identifier) who belong to each partition. In

order to ensure the peer partitions are not chosen maliciously, the aggregator can

commit to a random seed and then use a shared or public source of randomness, e.g.

the NIST randomness beacon [1], to generate random partitions.

The aggregator then requests a list of feature subsets from each peer partition.

Feature subsets are rather self-explanatory: groups of features from the full set of 𝑘𝑓

shared features that do not overlap. Each peer responds with a separate data packet

for each feature subset requested of them, comprising their values for the requested

features and their label. These data form vertical partitions.

The aggregator collects 𝑘ℎ feature subsets with 𝑘𝑠 features each. The purpose of

creating peer partitions is to allow the aggregator to request different feature subsets

from each one, thereby capturing more information about joint feature distributions

in the full matrix. In total, the aggregator collects 𝑘𝑝 · 𝑘ℎ partitions. Each vertical

partition contains 𝑘𝑠 features and one label for each of 𝑛
𝑘𝑝

entities. The partitioning

process is visualized in figure 6-1.
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6.2 Building a model

The aggregator’s goal is to use the noisy partitions to learn a discriminatory model

that maps a feature space to a label:

𝑙← 𝑔(𝑥1...𝑘𝑓 ) (6.1)

where 𝑚 is the total number of features, 𝑥1...𝑘𝑓 are feature values, 𝑔(.) is the model,

and 𝑙 is the binary label she wants to infer.

Once the aggregator has collected all 𝑛𝑝𝑎𝑟𝑡𝑠 = 𝑘𝑝 · 𝑘ℎ partitions of the dataset, she

learns a classifier on each one, 𝑔𝑖(.) for 1 ≤ 𝑖 ≤ 𝑛𝑝𝑎𝑟𝑡𝑠. Each partition classifier accepts

as input a subset of all features, 𝑥𝑠𝑢𝑏(𝑖), and outputs a single label prediction in {0, 1}.

In order to combine the classifiers into an ensemble, the aggregator cross-validates

each partition’s classifier on the noisy data to obtain a performance score, 𝑠𝑖, such as

ROC/AUC or f1. Then the discriminatory function is

𝑠𝑐𝑜𝑟𝑒(𝑥1...𝑚) =

𝑛𝑝𝑎𝑟𝑡𝑠∑︁
𝑖=1

𝑠𝑖𝑔𝑖(𝑥𝑠𝑢𝑏(𝑖))

−
𝑛𝑝𝑎𝑟𝑡𝑠∑︁
𝑖=1

𝑠𝑖(1− 𝑔𝑖(𝑥𝑠𝑢𝑏(𝑖)))

𝑔(𝑥1...𝑚) =

⎧⎪⎨⎪⎩1, if 𝑠𝑐𝑜𝑟𝑒(𝑥1...𝑚) ≥ 0

0, otherwise
(6.2)

This method is similar to the feature subspace method, first described by Ho [28].

We tested different types of partition classifiers and different cross validation metrics,

and we describe the results in section 8.3.
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Chapter 7

Data Privacy

Thus far, we have shown how AnonML peers exchange data with the aggregator such

that the provenance of their network packets is hidden. However, a secure, anonymous

data exchange protocol does not prevent disclosure caused by the content of the data.

For example, suppose a student from our MOOC example shares a feature packet

including their grade on homework 4 (feature), their zip code (feature), and their final

grade (label). If the aggregator has auxiliary information about the student – perhaps

they’ve alluded to their grade or their location on a public forum in the past – they

may be able to uniquely identify the student’s data packet, thereby learning sensitive

information (their final grade). In such a situation, it doesn’t matter whether the

aggregator cannot connect the packet to their IP address or public key: the student’s

privacy is compromised anyway.

To account for these privacy violations, our system gives participants the option

to obscure their data with perturbation, giving them strong theoretical protection

with differential privacy.

Developed in a series of papers by Cynthia Dwork et al., [16, 13], differential

privacy is a measure of the privacy-preserving quality of a system which releases

information about a data set. It has been extremely influential in the past decade,

and has come to dominate both theoretical and practical discussions on privacy.

Differential privacy describes the way a system’s output responds to small changes in

the underlying data. Intuitively, no one person’s presence or absence should affect the
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system’s behavior more than a trivial amount. If a user is deciding whether to allow

their data to be used in a differentially private release, they should have confidence

that the algorithm will likely produce the same output whether they do or not.

More formally: Suppose we have an algorithm, 𝐴, which operates on a data set,

𝐷, and produces output according to some probability distribution. Now, suppose

we have two datasets, 𝐷1 and 𝐷2, which differ by a single element 𝑑. Differential

privacy quantifies amount that such a change can affect the probability distribution

of the algorithm’s output. 𝐴 is said to be 𝜖-differentially private if, for every 𝐷1, 𝐷2

and every set of possible outputs 𝑆 ⊆ 𝑟𝑎𝑛𝑔𝑒(𝐴):

𝑃 [𝐴(𝐷1) ∈ 𝑆]

𝑃 [𝐴(𝐷2) ∈ 𝑆]
≤ 𝑒𝜖 (7.1)

It suffices to show that (7.1) holds for every 𝑆 with a single element. In other

words, the probability that 𝐴(𝐷1) produces any output 𝑦 must be close (within a fixed

multiplicative factor, 𝑒𝜖) to the probability that 𝐴(𝐷2) produces the same output. We

will use 𝜖-differential privacy to quantify the privacy loss incurred by our method of

data perturbation and table release.

Differential privacy can be assessed in two settings:

– Global: A trusted data analyst has access to data from many different people.

The analyst applies the algorithm 𝐴 to the full dataset and releases aggregate

statistics or full databases.

– Local: Each person only has access to their own data, and there is no trusted

central authority. Each person perturbs and releases their own data separately.

In our setting, each peer must publish their own data as a single point, so AnonML

provides local differential privacy. This is achieved as follows. First, peers preprocess

their partial feature vectors 1, convert them into local, bit-string “histograms.” Next,

peers perturb their histograms and share them with the aggregator. Then the aggre-

gator combines noisy histogram data and estimates the joint distribution of feature

1A partial feature vector includes a peer’s label value and a subset of their feature values.
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vectors in the group. Finally, the aggregator samples synthetic training data from

this joint distribution and proceeds to build a model.

7.1 Feature preprocessing

The aggregator’s goal is to estimate the joint distribution of feature-label vectors in

each vertical partition of the dataset using differentially private queries to each peer.

We can map this task to the problem of locally-private histogram estimation.

Histogram estimation assumes that each member of a group has a single value from

a finite domain of possible categorical values. The estimator must use differentially-

private queries to estimate the frequency of each value in the group. The aggregator

uses histogram estimation to approximate the distribution over each vertical partition

in the dataset. This method requires that all features and labels be discrete values,

so that each partial feature vector can be mapped to a single categorical value. As

we will show, it is desirable for the domain of the histogram to be small, so features

should be of low cardinality.

First, continuous numeric features are mapped to low-cardinality ordinal features.

Then, to reduce error, high-cardinality categorical features may be mapped to lower-

cardinality features via grouping. Finally, each partial feature vector is mapped to a

single categorical value. For example, a vector containing three binary features and

a binary label can be mapped to a bit string, 𝑐 ∈ {0, 1}4.

7.2 Feature binning

Many features in real datasets are continuous or integer variables. In order to share

them as private histograms, it’s first necessary to reduce them to low-cardinality

discrete values. We do so via binning : mapping continuous and ordinal variables to

a smaller, discrete domain using threshold values. For example, a “test score” feature

between 0 and 100 could be mapped to bins of [0, 20), [20, 40), ..., [80, 100).

As we will show in section 7.3.4, the expected error of histogram estimation is very
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sensitive to the histogram’s cardinality. Therefore, to minimize expected error, we

want to reduce feature cardinality as much as possible. For this paper we reduced all

ordinal features to binary variables. We chose to bin variables around their global me-

dian, reasoning that without prior information about feature-label joint distributions,

we should aim to maximize feature parity. In other words, each feature is mapped to

bins of [𝑚𝑖𝑛,𝑚𝑒𝑑𝑖𝑎𝑛) and [𝑚𝑒𝑑𝑖𝑎𝑛,𝑚𝑎𝑥). We devised a privacy preserving median

estimation technique, which we describe next.

7.2.1 Privacy preserving median estimation

We use a simple binary search with privacy-preserving queries to estimate the median

for continuous-valued features. Our method requires an educated guess about the

minimum and maximum values in the distribution. Luckily, such information is often

available in practice: for example, our "test score" feature must be between 0 and 100.

The algorithm involves splitting the group of peers into 𝑘 partitions, then querying

each one in sequence to obtain progressively more accurate estimates for the median.

The full method that the aggregator uses is described in algorithm 1.

On the peers’ end, the remote procedure call IsGreater returns a perturbed bit,

𝑏, which indicates whether the peer has a value greater than the proposed median

estimate. IsGreater uses random response with privacy parameter 𝜖𝑒, and algo-

rithm 1 involves a single differentially private query to each peer in the group. This

algorithm can be generalized to estimate the distribution for an arbitrary number of

bins, although we do not address that problem here.

Once the aggregator has computed an estimate of the median for each feature,

she shares the estimates with the peers. Each peer then generates a new, discrete

feature vector based on the median values published by the aggregator.

7.3 Locally-private histogram release

Once peers have finished processing their feature vectors, the aggregator estimates

the distribution over each feature partition in a differentially private way. We can
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Algorithm 1 Estimate the median of a numeric feature.
Require: Π is a set of random partitions of all peers
Require: (𝑚𝑖𝑛,𝑚𝑎𝑥) defines range of possible values
Require: 𝜖 is the privacy parameter
Require: MarginOfError is a method which finds the expected error of a noisy

estimate (equation 7.2)

function EstimateMedian(Π, min, max, 𝜖)
𝑒 ← 𝑚𝑎𝑥−𝑚𝑖𝑛

2
◁ Estimated median

step ← 𝑚𝑎𝑥−𝑚𝑖𝑛
2

for 𝜋 ∈ Π do
𝑛 ← 0
for 𝑝 ∈ 𝜋 do ◁ Each peer in partition

𝑛 ← 𝑛 + 𝑝.IsGreater(𝑒)
end for
err ← MarginOfError( 𝑛

|𝜋| , 𝜖)
step ← step / 2
if 𝑛

|𝜋| - err > 0.5 then
𝑒 ← 𝑒 + step

else if 𝑛
|𝜋| + err < 0.5 then

𝑒 ← 𝑒 - step
end if

end for
return e

end function
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map this task to the problem of locally-private histogram estimation.

Suppose the aggregator is trying to estimate the distribution of feature vectors in a

vertical partition with domain 𝒞. The distribution can be represented by a histogram

of length 𝑚 := |𝒞|, where the value in position 𝑖 represents the number of peers who

have the feature vector represented by the value 𝑐𝑖 ∈ 𝒞. Each peer shares a single

"local histogram," a bit string of length 𝑚 indicating whether or not they have each

𝑐𝑖. Without perturbation, each peer would share a bit string with exactly one bit set

to 1. Here we explore the ways a peer can perturb its bit string to satisfy differential

privacy.

7.3.1 Random response

A simple way to achieve local differential privacy is via random response. Each peer

reports their real value, 𝑥 = 𝑐𝑖, with some probability 𝑝. With probability 1− 𝑝 they

choose a value from the rest of the domain, 𝒞∖{𝑐𝑖}, and report that instead. Basic

random response achieves local 𝜖-differential privacy with 𝜖 = ln(𝑚 · 𝑝
1−𝑝

) [33]. In

the histogram setting, the peer first generates a perturbed categorical value 𝑥′ ∈ 𝒞

according to the method described. They then send a perturbed bit string, 𝐵′ ∈

{0, 1}𝑚, in which the bit corresponding to the value 𝑥′ is 1 and all other bits are 0.

7.3.2 RAPPOR – Bitwise perturbation

RAPPOR is another set of methods for bitwise perturbation [20]. Using basic, one-

time RAPPOR, each peer sends a length-𝑚 bit string in which each bit is perturbed

independently. If 𝐵 is a peer’s local histogram, each bit 𝐵𝑖 ∈ 𝐵 is reported as 𝐵′
𝑖

according to

𝐵′
𝑖 =

⎧⎪⎨⎪⎩𝐵𝑖, with probability 𝑝

1−𝐵𝑖, with probability 1− 𝑝

where 𝑝 is a tunable privacy parameter. This technique is essentially the concate-

nation of 𝑚 binary random responses, with each one indicating whether the peer

has a specific value. Basic one-time RAPPOR achieves 𝜖-differential privacy with
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𝜖 = ln( 𝑝2

(1−𝑝)2
).

7.3.3 (𝑝, 𝑞)-perturbation

We propose a slight generalization of the one-time RAPPOR algorithm which treats

0 and 1 bits asymmetrically. Specifically, if the peer’s true bit is a 1, the perturbed

bit is set to a 1 with probability 𝑝. If the true bit is a 0, the perturbed bit is set

to 1 with probability 𝑞; 𝑞 < 𝑝. If 𝑞 = 1 − 𝑝, our method is equivalent to one-time

RAPPOR.

Theorem 1. The bit-string perturbation method described above is ln(𝑝(1−𝑞)
(1−𝑝)𝑞

)-differentially

private.

Theorem 1 is proven in the appendix. As we will show, adding an extra degree of

freedom to the bit-string perturbation allows us to achieve slightly better expected

error, especially when cardinality is high or privacy requirements are low.

7.3.4 Error correction and minimization

Each one of the perturbation methods described above yields a noisy histogram, each

“bar” of which is an approximate count of the number of peers in the group who

have a specific categorical value. The noisy counts collected by the aggregator are

skewed away from the actual counts in the group’s dataset, so some post-processing is

necessary to achieve a better set of estimates. Once the aggregator has computed an

estimate of the dataset’s histogram, she generates a synthetic set of training data by

sampling from the histogram and converting categorical values back into feature-label

vectors. These data are fed into the learning algorithm described in section 6.2.

Here we describe the histogram estimation process, and discuss how to minimize

the expected error of the final histogram. Let 𝑛 be the total number of peers in the

group, and 𝑛𝑖 be the number of peers who have a particular value 𝑐𝑖 ∈ 𝒞. Let 𝑛𝑖

be the noisy count collected by the aggregator. The aggregator can achieve a better

estimate of 𝑛𝑖, which we’ll call �̇�𝑖, with the following:
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�̇�𝑖 =
𝑛𝑖 − 𝑞𝑛

𝑝− 𝑞

The expected value of �̇�𝑖 is the real value: E[�̇�𝑖] = 𝑛𝑖.

Expected error

In order to compare perturbation techniques, we will look at the expected error of

each. We are particularly interested in the accuracy of the type estimate, 𝑇𝑋 : the

𝑙1-normalized histogram which describes the relative frequency of each value. We will

attempt to minimize the expected 𝑙2-norm error of the noisy type estimate, �̇�𝑋 .

Theorem 2. The expected type estimate error for (𝑝, 𝑞)-perturbation is given by:

𝐸‖�̇�𝑋 − 𝑇𝑋‖2 =
√︀
(𝑚− 1)𝑞(1− 𝑞) + 𝑝(1− 𝑝)

(𝑝− 𝑞)
√
𝑛

(7.2)

Theorem 2 is proven in the appendix. We can use equation 7.2 to compute the

expected error of one-time RAPPOR by substituting 1 − 𝑝 for 𝑞. Likewise, we can

compute the expected error of random response by substituting 1−𝑝
𝑚−1

for 𝑞.

Minimizing error with respect to 𝜖

Let 𝑓𝑋(𝑚,𝑛, 𝑝, 𝑞) := 𝐸‖�̇�𝑋 − 𝑇𝑋‖2 be the error function. In general, 𝑚 and 𝑛 are

determined by the structure of the problem. The privacy parameter 𝜖 is a function

of 𝑝 and 𝑞, as shown in 1, so if 𝑚,𝑛, 𝜖 are fixed, 𝑞 is determined by 𝑝. Therefore, we

are interested in minimizing 𝑓𝑋 with respect to 𝑞.

The univariate 𝑓𝑋(𝑝) is convex on 𝑝 ∈ (0, 1), so error is minimized where 𝑑
𝑑𝑝
𝑓𝑋 = 0.

Let 𝜆 := 𝑒𝜖. The error is minimized at:

𝑝𝑚𝑖𝑛 =
1

𝜆2 − 1

(︂
𝜆2 +𝑚𝜆− 𝜆−√︀

(𝑚− 1)(𝜆3 + 𝜆) + ((𝑚− 1)2 + 1)𝜆2

)︂ (7.3)

Figure 7-1 shows the relationship between 𝑚 and 𝑝𝑚𝑖𝑛, 𝑞𝑚𝑖𝑛 for fixed 𝜖. At 𝑚 = 2,
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Figure 7-1: Optimal 𝑝 and 𝑞 as a function of variable cardinality. 𝑝𝑚𝑖𝑛 and 𝑞𝑚𝑖𝑛

are the values for 𝑝 and 𝑞 which minimize expected error for a given cardinality 𝑚.
As 𝑚 grows, 𝑝𝑚𝑖𝑛 approaches 1

2
. The dashed lines show the equivalent perturbation

probabilities under basic one-time RAPPOR. Here, we have fixed 𝜖 = 1.

when the feature is boolean, 𝑝𝑚𝑖𝑛 is equal to the 𝑝 such that 𝑝 = 1 − 𝑞. This is

the value for 𝑝 used by basic one-time RAPPOR. As the cardinality 𝑚 grows, the

error-minimizing 𝑝 approaches 1
2
.

Comparing perturbation techniques

We have described three different techniques for achieving local differential privacy:

random response, one-time RAPPOR, and (𝑝, 𝑞)-perturbation, a generalization of

RAPPOR. We’re interested in determining which method will minimize expected

error for a given set of parameters.

Although random response and (𝑝, 𝑞)-perturbation are similar, they have some-

what unintuitive differences in privacy. For a given 𝜖, a peer using random response

is 𝑒𝜖 times more likely to report their real value than any other value, while a peer

using bit vector perturbation is, at most, only 𝑒
𝜖
2 times more likely.

Figure 7-2 shows the 𝑙2 error incurred by each technique for various values of 𝜖 and

𝑚. In our setting, (𝑝, 𝑞)-perturbation is a strict, if slight, improvement over one-time

RAPPOR. The difference in error only becomes relevant at high values of 𝜖. For low
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Figure 7-2: Expected type estimate error as a function of 𝜖 and 𝑚 at 𝑛 = 10, 000
peers. On top, 𝑚 = 16; on the bottom, 𝜖 = 1.

𝑚 and high 𝜖, random response is the most effective perturbation method. For low 𝜖

and high cardinality, (𝑝, 𝑞)-perturbation is optimal.

Since expected error can be computed with a simple equation, AnonML peers can

determine the error-minimizing method of perturbation before each data exchange.
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7.4 Privacy Budget

One of the earliest results in the field of differential privacy was that if the same

data are released privately multiple times, the epsilons "add up." More formally, if

there are 𝑘 releases of the same dataset under differentially private mechanisms with

parameters 𝜖1, ..., 𝜖𝑘, the dataset is protected by (
∑︀𝑘

𝑖=1 𝜖𝑖)-differentially privacy [17].

Under our system, each peer releases multiple private bit strings for histogram

estimation. Each bit string release contains information about several features. Even

if the feature subsets are mutually independent, the release of 𝑘ℎ bit strings involves

𝑘ℎ separate releases of the label value. If each histogram is released with 𝜖ℎ-differential

privacy, the system achieves (𝑘ℎ𝜖ℎ)-privacy with respect to the label.

Median estimation requires another set of private queries, each of which asks for a

single binary attribute of a single feature. If we assume the features are independently

distributed, the privacy cost is accrued by the privacy budget for each feature, which

is separate from the privacy budget for the label.

Let 𝜖𝑗ℎ be the privacy parameter for the 𝑗𝑡ℎ feature subset historgram release, and

let 𝜖ℎ(𝑖) be the parameter for the feature subset containing feature 𝑖. Let 𝜖𝑖𝑒 be the

parameter for the median estimate of feature 𝑖. Then the total privacy budget for a

single feature is 𝜖𝑖𝑓 = 𝜖ℎ(𝑖) + 𝜖𝑖𝑒, and the budget for the label is 𝜖𝑙 =
∑︀𝑘ℎ

𝑗=1 𝜖
𝑗
ℎ.

If a peer has 𝑘𝑓 features and releases private histograms for 𝑘ℎ feature subsets,

the total privacy budget must be

𝜖𝑇 = max
(︁

max
1≤𝑖≤𝑘𝑓

(𝜖𝑖𝑓 ), 𝜖𝑙

)︁
(7.4)
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Chapter 8

Results

We tested AnonML model generation on a number of datasets to assess its perfor-

mance in real-world scenarios. Using what we consider to be reasonable values for 𝜖, it

was possible to generate useful, performant models on some problems. From this, we

conclude that there may be a great deal of relatively easy machine learning problems

which can be solved with our system. However, further research should investigate

what kinds of problems are amenable to locally-private learning.

8.1 Datasets

We primarily tested and evaluated our system with two datasets: a set of MOOC

user data from the EdX platform and a US census release. Both datasets comprise

simple numeric or categorical values and both have a binary label.

8.1.1 EdX: predicting dropout

We processed raw data from a number of popular 2012/2013 MIT EdX online classes

[27] collected with the MOOCDB system [51]. The data includes rich, fine-grained

logs of every student’s interactions with the courseware, including clicks, problem

submissions, interactions with lecture videos, forum posts, wiki edits, etc. Our clas-

sification problem is the following: given a student’s data up to and including week 𝑖
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of a class (and the fact that they were still enrolled at week 𝑖), predict whether the

student would drop out before week 𝑗. The examples in this paper use 𝑖 = 6 and

𝑗 = 10. We processed rich log data into a set of 13 features, which are all numeric,

continuous, and independent.

8.1.2 Census: predicting salary

We used the “Adult Data Set” of census data from the UCI machine learning repository

[38]. The dataset contains 15 features on 48,842 individuals, including education

level, age, sex, and marital status. The task is to predict whether a given person

makes more than $50,000 per year. There are six numeric features, including age and

capital gains, and eight categorical features, including marital status and occupation

area. We performed manual bucketing on some categorical features in order to reduce

cardinality (e.g. by reducing the “nation of origin” feature into just “US” and “Non-

US” categories), and removed two redundant or unnecessary features (e.g. “education

level” and “years of education” carried the same information).

8.2 Comparison with traditional methods

First we tested our model-generation technique on raw, unperturbed feature data.

Many of the features are high-cardinality categorical or continuous variables. We

tested both with and without binary feature binning. This mode does not offer

any privacy guarantees, but gives a ceiling for attainable performance with privacy,

and demonstrates that our vertical-partitioning method is sound. The results are in

figure 8-1. Our classifier performed nearly as well as other ensemble methods on some

problems, but not as well on others. This establishes that our fundamental learning

technique is sound. It also suggests that access to the joint distribution over the full

set of features is unnecessary for some learning problems.
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Figure 8-1: Comparison of AnonML with other ensemble learning methods on unper-
turbed data. These tests used five partitions, three features per subset, and as many
non-overlapping feature subsets as possible.

8.2.1 Performance with privacy

Next, we tested the problems with privacy-preserving binning and data release. For all

tests, continuous features were binned into binary features using median estimation,

and AUC scores are an average of 500 trials.

Figures 8-2 shows AnonML’s performance on various problems under different

privacy budgets. The dashed lines indicate the performance of our model without any

perturbation. In those tests, all features were binned using exact median estimates,

and all histograms were known precisely. In 8-2a, tests were performed with two sets

of three random feature on each of five partitions, while in 8-2b, each peer was queried

for two "sets" of one feature. The privacy parameter for subset perturbation (𝜖ℎ) is

shown on the top axis, and the total privacy budget (𝜖𝑇 ) is shown on the bottom. In

all tests, the privacy parameter for median estimation, 𝜖𝑒, was equal to 𝜖ℎ.

For all datasets, utility approached the optimum asymptotically as a function of

𝜖𝑇 . For both EdX datasets, the single-feature case was able to approach optimal
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Figure 8-2: Performance as a function of 𝜖𝑇 on different datasets. All experiments are
mean values from 500 trials. Note that the performance curves for the EdX datasets,
3.091x and 6.002x, tend towards their asymptotes much more quickly in 8-2b than in
8-2a. The curve for the Census dataset is nearly identical in both.
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performance very quickly as a function of 𝜖. However, on the census dataset, models

with three features per subset outperformed single-feature models in lower privacy

scenarios. Overall, we found AnonML’s tradeoffs between utility and privacy to be

reasonable and encouraging.

8.3 Optimal partition classifiers

In our tests, we found decision trees to be effective partition classifiers in low-privacy

and high-cardinality settings, and logistic regressions to be more effective with low-

cardinality variables or with lots of perturbation. Additionally, we found f1 score to

be the most effective metric for scoring classifiers in order to optimize for the resulting

ensemble’s f1 and ROC/AUC.

8.4 Tuning parameters

AnonML has several parameters which can be tuned by the aggregator to maximize

performance.

– Partitions (𝑘𝑝): Splitting the dataset into more horizontal partitions means

more classifiers can be trained and tested with a single query to each peer.

The trade-off is that fewer peers’ data is used to generate each classifier, which

means higher expected histogram error.

– Subset size (𝑘𝑠): Larger feature subsets capture more information about joint

feature distributions, but cause more noise to be added to each histogram for

fixed 𝜖.

– Subsets per partition (𝑘ℎ): Requesting more feature subsets from each peer

captures more information. For a fixed 𝜖𝑇 , more subsets per peer means lower

𝜖ℎ for each subset. Some peers may prefer to keep features more private in this

way.
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Figure 8-3: Model performance response to the number of horizontal partitions, 𝑘𝑝,
with 3 features per subset. All ROC/AUC values are the mean of 400 trials. For this
trial, peak performance was achieved between 8 and 16 partitions.
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Figure 8-4: Model performance response to the number of features per subset, 𝑘𝑠,
with 5 horizontal partitions. All ROC/AUC values are the mean of 400 trials. For
this trial, peak performance was achieved at 𝑘𝑠 = 3 in the lower-privacy settings; in
the high-privacy setting, 𝑘𝑠 of 1 to 3 were nearly identically performant.
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Figure 8-5: Model performance response to the number of features per subset, 𝑘𝑠,
with 20 horizontal partitions. All ROC/AUC values are the mean of 400 trials. For
this trial, overall peak performance was achieved at 𝑘𝑠 = 2.
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Figures 8-4 and 8-5 show the results of experiments with varying subset sizes, and

fig. 8-3 shows how model performance responds to different partition sizes with a

fixed subset size. All experiments in figures 8-4, 8-5 and 8-3 were performed on the

census dataset using logistic regression as the partition classifier. Our experiments

showed that using multiple partitions (when subset size is greater than 1) offered

a significant boost to performance, with somewhere between 𝑘𝑝 = 8 and 𝑘𝑝 = 16

appearing to be the optimal value for subset size 3.

Subset size also had noticeable effect on performance. In general, for the higher-

privacy (lower 𝜖) domain, using smaller feature subsets yielded consistently better

performance. With less privacy, subset sizes of two and three became very slightly

preferable. Overall, we found that the best choice was usually a subset size of one –

that is, each (feature, label) pair being perturbed and sent independently. This was

especially true for the EdX datasets.
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Chapter 9

Discussion

Our contributions in this thesis are twofold. First, we have presented a framework for

processing personal data into a simple, universal representation for machine learning.

Second, we presented and analyzed a practical, end-to-end system that enables learn-

ing on such data with practical and theoretical privacy guarantees. In our tests, we

showed that AnonML can perform well on a number of real-world prediction problems

while satisfying local differential privacy.

9.1 AnonML performance

One interesting result of our tests is that our technique of median estimation and bi-

nary binning performed quite well on some datasets. The features in the EdX datasets

all began as continuous values, so binary binning destroyed most of the information

available. However, as shown in figure 8-1, the performance of the unperturbed

3.091x model after binning was nearly identical to the AnonML model trained on

unperturbed continuous variables. The 6.002x and census datasets suffered more sig-

nificant performance dropoffs from binning, but we are optimistic overall about the

possibilities of learning with extreme cardinality reduction. There

Another result is that small feature subsets consistently performed better than

large ones. In other words, with privacy a factor, learning with the joint distribution

of many features often hurt performance more than it helped. This is understandable:
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the expected error of the type estimate grows exponentially in subset size.

For the datasets we tested, it was more important to keep expected error low

than to learn joint feature distributions. However, we note that our experiments

used a new set of random feature subsets for each test. With larger feature subset

sizes, the variance of the performance of each model was much greater, and some

sets of feature subsets were much more performant than others. This suggests that

skilled data scientists may be able to specify feature subsets which can outperform

single-feature models in spite of the greater error.

9.2 Differential privacy and anonymity

Our system comprises two privacy-preserving techniques. Anonymous networking,

described in chapter 5, ensures that the aggregator cannot link any two feature packets

to the same peer. Differentially private data sharing, described in chapter 7, gives

theoretical guarantees about the privacy of data in the whole system. Neither one,

alone, can promise perfect privacy. Anonymous routing hides the network provenance

of data, but it does not protect users from revealing sensitive information in the

data itself. Differential privacy bounds the information an aggregator can learn from

any one data release; however, if an aggregator knows a private release came from

a particular peer, she can update her prior beliefs about the peer in a potentially

meaningful way. With AnonML, a nosy aggregator faces two complementary barriers.

Differential privacy ensures she cannot learn anything concrete about any peer or the

group as a whole, and anonymous networking ensures that she cannot link any data

release to any peer with certainty. Together, these techniques allow peers to share

private, sensitive data with confidence.

9.3 Future work

Here we describe proposed applications for our contributions and suggest future work.
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9.3.1 Personal machine learning applications

The framework we presented in chapter 3 will only be useful if it is adopted in the

real world. We believe this can be achieved by focusing on building usable systems.

Here, we speculate about what an implementation of our framework would look like

at three different levels of abstraction, each of which builds on the previous level and

targets users with a different level of technical ability.

We believe that the central challenge of machine learning for the next several years

will be enabling intuitive problem definition. Despite great advances in automation,

human decisions are still required to define entities and labels (i.e. instancers), and it

appears this will remain so for the foreseeable future. In all three of these prospective

applications, our goal is to make it easier for users to articulate the problems they

want to solve, and allow machines to do as much of the rest of the work as possible.

1. ML pipeline framework and library: The most basic use of our framework

would involve a small, personal database application that users could install on

a phone or personal cloud computer, as well as a public repository of importer

plugins for various common data sources. Users could install importers for apps

and services they use, and their data would automatically be cleaned, collated

and saved as an event stream in their personal database. Basic instancer and

featurizer primitives would be available in an open-source library. An amateur

data scientist with an idea for an ML model could write a custom instancer and

featurizer, then plug the output feature matrix directly into a machine learning

library like scikit-learn. Users could share their custom model frameworks

with each other or package them as standalone applications and distribute them

on application marketplaces.

2. Graphical ML interface: To make problem definition more accessible, our

framework could be wrapped in a standalone application with a graphical in-

terface. The application would include a library of importer plugins and allow

users to enable and disable data sources with a single click or tap. The ap-

plication would display a user’s personal dataset as an event stream and allow
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them to explore their data with basic visualization tools. The main purpose of

the application would be to enable users without coding skills to create their

own instancers. A graphical interface would allow a user to define an entity,

perhaps by selecting subsets of their event stream with some pattern-matching

functions. Then the user would define a label as a function of the data in a

single instance of the entity. The app would allow the user to combine simple

primitive functions, like sum, count, and min/max, with a graphical flow chart.

Once a user had defined an instancer, he could manually define features using

the same function-composition interface used for labeling, or the app could

automatically perform feature engineering with a library like featuretools

[34]. Users could share their instancer and featurizer implementations with

each other through an in-app marketplace.

3. ML voice assistant: The ultimate personal machine learning application

would allow users to ask questions in plain English and respond by constructing

a new model and querying it in real time. For example, a user might ask “How

likely am I to pass the test tomorrow?” In response, the app would interpret the

question as an instancer: “test” would be the entity, and “pass/fail” would be the

boolean label. Then, the app would search the user’s dataset for previous in-

stances of tests, perform automatic feature engineering on the training examples

it found, and build a model with the most predictive features it could generate.

Finally, it would use the features available at the present time – perhaps things

like “hours of sleep last night,” “hours spent studying in past week,” and “grades

on past month’s homework” – to make a prediction. All of this would happen

behind the scenes, and the user would just hear the response: “Based on your

recent habits, you have a 70% chance of passing.” This application may seem

far off, and there is certainly a lot of work to be done before it can become

a reality. However, we believe that our framework a first step towards such a

truly democratized machine learning solution.
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9.3.2 AnonML applications

As a standalone application, AnonML is suitable for a variety of learning problems

and scenarios where people want to perform machine learning, but do not want to

trust a central authority with personal data. Here, we list a few potential use cases:

– A corporation or institution wants to provide a service which uses a classifier

learned from its users’ sensitive personal data. The data may be excessively

revealing or highly regulated, so the organization does not want the liability

of storing it on their servers. The organization only collects and uses sensitive

data via AnonML.

– Many people use a particular piece of software such as a ride-sharing service.

A central authority collects their data but does not allow others to access it.

A group of users decide they want to use their own data to train a machine

learning model that the authority does not provide for them, for example, to

predict when ride prices will surge. One user acts as an aggregator and the rest

act as peers and share sanitized data.

– A new startup is trying to break into an industry with an established incumbent.

The startup wants to gather data about when and why the incumbent’s users

leave their service. They offer a small amount of compensation for each of the

incumbent’s users to share their usage data in a privacy-preserving way.

9.3.3 Privacy

The problem of private histogram estimation is relatively well-studied, but its appli-

cations to machine learning are not. A more thorough investigation into how best to

use locally-private histogram releases to build machine learning models might incor-

porate heavy-hitter estimation [2]. In addition, 𝑙2-norm error may not be the best

utility function our actual needs (i.e. machine learning performance) – a rigorous

theoretical analysis akin to [33] would be desirable.
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We used simple logistic regression and decision trees as the basis for AnonML’s

ensemble classifiers. It may be possible to tune these mechanisms, or find different

ones, in order to better learn on noisy histograms. Our tactic of median estimation for

feature binning worked surprisingly well, but it may not work for all problems; we sug-

gest investigating higher-cardinality private binning and binning metrics other than

median. To create ensembles, we used cross-validation scores on the noisy partitions.

It may be possible to get more accurate scores, and better classifier performance, with

another set of privacy-preserving queries to the data holders.

Finally, we believe that a general discussion about how to interpret the guarantees

of 𝜖-differential privacy is necessary. We introduced anonymous networking as a way

to enhance the practical privacy of locally-private releases, but it’s not clear how much

this actually reduces the risk of disclosure. Our system – and others like it – would

benefit from a more intuitive way of discussing privacy, or at least an alternative

one. This is not an easy problem. Differential privacy has been so successful in

part because other privacy frameworks have either failed to stand up to scrutiny,

including 𝑘-anonymity, 𝑙-diversity, and 𝑡-closeness [50, 40, 37], or failed to achieve

wide adoption, like [36]. But without a more flexible, accessible way to assess the

privacy of data systems, we fear that the proliferation of useful privacy-preserving

systems may suffer.
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Appendix A

Proofs

Theorem 1. (𝑝, 𝑞)-perturbation ln(𝑝(1−𝑞)
(1−𝑝)𝑞

)-differentially private.

Proof. Let ℬ be the universe of possible real bit strings: strings of length 𝑚 in which

one bit is set to 1 and the rest are 0. Let ℬ′ be the universe of possible perturbed bit

strings, {0, 1}𝑚. Let 𝑏 ∈ ℬ be a real bit string, and let 𝑏′ ∈ ℬ′ be a set of perturbed

bits.

𝑃 (𝐵′ = 𝑏′|𝐵 = 𝑏) =
∏︁

𝑗∈{1...𝑚}

𝑃 (𝐵′
𝑗 = 𝑏′𝑗|𝐵𝑗 = 𝑏𝑗)

Since 𝑏𝑖 is 1 and all other real bits are 0, we have

𝑃 (𝐵′ = 𝑏′|𝐵 = 𝑏) =𝑝𝑏
′
𝑖(1− 𝑝)1−𝑏′𝑖×∏︁

𝑗∈{1...𝑚}∖{𝑖}

𝑞𝑏
′
𝑗(1− 𝑞)1−𝑏′𝑗

We need to show that, given two peers with any two real bit strings 𝑏 and 𝑏*,

respectively, the probability that either one will generate the perturbed string 𝑏′ is

similar. Let 𝑖 be the index of the 1 bit in 𝑏, and let 𝑗 be the index of the 1 bit in 𝑏*.

Formally,
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𝑒𝜖 ≥ max
𝑏′∈ℬ′;𝑏,𝑏*∈ℬ

𝑃 (𝐵′ = 𝑏′|𝐵 = 𝑏)

𝑃 (𝐵′ = 𝑏′|𝐵 = 𝑏*)

=
𝑝𝑏

′
𝑖(1− 𝑝)1−𝑏′𝑖

∏︀
𝑘∈{1...𝑚}∖{𝑖} 𝑞

𝑏′𝑘(1− 𝑞)1−𝑏′𝑘

𝑝𝑏
′
𝑗(1− 𝑝)1−𝑏′𝑗

∏︀
𝑘∈{1...𝑚}∖{𝑗} 𝑞

𝑏′𝑘(1− 𝑞)1−𝑏′𝑘

Because the strings 𝑏 and 𝑏* differ in at most two spots, bits 𝑖 and 𝑗, this can be

simplified to

𝑒𝜖 ≥ 𝑝𝑏
′
𝑖(1− 𝑝)1−𝑏′𝑖𝑞𝑏

′
𝑗(1− 𝑞)1−𝑏′𝑗

𝑝𝑏
′
𝑗(1− 𝑝)1−𝑏′𝑗𝑞𝑏

′
𝑖(1− 𝑞)1−𝑏′𝑖

This expression is maximized when 𝑖 ̸= 𝑗 and 𝑏′𝑖 ̸= 𝑏′𝑗. In that case,

𝜖 = ln
𝑝(1− 𝑞)

(1− 𝑝)𝑞

Theorem 2. The expected error for (𝑝, 𝑞)-perturbation is given by:

𝐸‖�̇�𝑋 − 𝑇𝑋‖2 =
√︀
(𝑚− 1)𝑞(1− 𝑞) + 𝑝(1− 𝑝)

(𝑝− 𝑞)
√
𝑛

(A.1)

Proof. Let 𝑛𝑖 be the number of peers who have a value 𝑐𝑖, which means 𝑛− 𝑛𝑖 peers

do not. Let �̃�𝑖 be a random variable representing the number of 𝑐𝑖 reported (before

the normalization step). We can think of �̃�𝑖 as being drawn from a combination of

binomial distributions, �̃�𝑖 ∼ 𝐵(𝑛𝑖, 𝑝) +𝐵(𝑛− 𝑛𝑖, 1− 𝑞). The variance of �̃�𝑖 is

Var[�̃�𝑖] = 𝑛𝑖𝑝(1− 𝑝) + (𝑛− 𝑛𝑖)(1− 𝑞)𝑞

After collecting the initial noisy count, �̃�𝑖 ∼ �̃�𝑖, the maximum likelihood estima-

tion is applied to compute the final estimate, �̇�𝑖. The expected value of �̇�𝑖 is the

true value, 𝑛𝑖, and its variance is

Var[�̇�𝑖] =
𝑛𝑖𝑝(1− 𝑝) + (𝑛− 𝑛𝑖)(1− 𝑞)𝑞

(𝑝− 𝑞)2

We’re interested in a type estimate 𝑇𝑋 for 𝑋: the portion of the population that
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has each 𝑐𝑖 ∈ 𝒞. This will be a vector which sums to 1, and our estimate can be

computed as �̇�𝑋 = �̇�
|�̇�| . The expected Euclidean distance between our estimate and

the unperturbed 𝑇𝑋 is

𝐸‖�̇�𝑋 − 𝑇𝑋‖2 =
1

𝑛

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

Var[�̇�𝑖]

=
1

𝑛(𝑝− 𝑞)

⎯⎸⎸⎷ 𝑚∑︁
𝑖=1

𝑛𝑖𝑝(1− 𝑝) + (𝑛− 𝑛𝑖)𝑞(1− 𝑞)

=
1

𝑛(𝑝− 𝑞)

√︀
𝑚𝑛𝑞(1− 𝑞) + 𝑛(𝑝(1− 𝑝)− 𝑞(1− 𝑞))

=
1√

𝑛(𝑝− 𝑞)

√︀
(𝑚− 1)𝑞(1− 𝑞) + 𝑝(1− 𝑝)
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