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Abstract

Within the automated machine learning movement, hyperparameter optimization has
emerged as a particular focus. Researchers have introduced various search algorithms
and open-source systems in order to automatically explore the hyperparameter space
of machine learning methods. While these approaches have been effective, they also
display significant shortcomings that limit their applicability to realistic data science
pipelines and datasets.

In this thesis, we propose an alternative theoretical and implementational ap-
proach by incorporating sampling techniques and building an end-to-end automation
system, Deep Mining. We explore the application of the Bag of Little Bootstraps to
the scoring statistics of pipelines, describe substantial asymptotic complexity improve-
ments from its use, and empirically demonstrate its suitability for machine learning
applications. The Deep Mining system combines a standardized approach to pipeline
composition, a parallelized system for pipeline computation, and clear abstractions for
incorporating realistic datasets and methods to provide hyperparameter optimization
at scale.
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Chapter 1

Introduction

Data science as an endeavor is based around the goal of generating insights and

predictive models from data. When given data along with an analytical or predictive

problem, data scientists develop an end-to-end solution, processing the data over

numerous steps, including preprocessing, feature extraction, feature transformation,

and modeling, until a solution is achieved. At each step, they choose which functions

to apply, along with associated hyperparameters. They make these choices through a

trial-and-error process using quantitative metrics and intuition from prior experience,

with the goal of producing either more useful analytical results or more accurate

predictions.

Data scientists’ solutions add value to an enterprise, and they are rewarded for

their skill and experience in making these decisions. As the industrial and academic

need for data-driven solutions grows along with the computational power and data

resources available, the number of problems to be solved far outweighs the number of

data scientists available to solve them. At the same time, for any given data problem,

the number of choices available for each step and the overall complexity of pipeline

is increasing exponentially 1, producing a space of possible solutions that is typically

too large for a data scientist to understand and explore.

1For example, deep learning now provides solutions for image problems competitive with (and in
many cases, better than) traditional HOG or SIFT based feature engineering. Many newer versions
of deep learning models are also emerging, but developing these models may require tuning a number
of hyperparameters.
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Given these two problems: (1) the increasing supply of data science problems and

(2) the growing suite of processing functions and rising complexity of pipelines, data

scientists face these two challenges:

∙ Making modeling choices: How to pick the best functions for each of the

processing steps? How to specify the hyperparameters for each step? Decisions

corresponding to each step interact in ways that are often not apparent to the

data scientist, and the resulting choices often fail to take advantage of potential

performance improvements from their coupling.

∙ Incorporating the latest tools: In every area of data science, new methods

and software packages are being introduced on a daily basis. These tools are not

standardized, and incorporating a new method may entail significant amounts

of exploration and software engineering effort before it can be integrated into a

workflow.

The promise of automation: Given these challenges, we ask: how can we enable

or augment existing data scientists? Can some of their work be automated? Given

data and a problem, could we create a better system that chooses appropriate pre-

processing functions, constructs a pipeline, and tunes the pipeline, trying different

hyperparameters as a data scientist would?2 This automated solution could even

provide a baseline for a human data scientist to build upon. In the next section,

we examine the challenges we encountered when thinking about these questions, and

how we address them through a unique system we call Deep Mining.

1.1 Automating what a data scientist does

To automate the data science process, we must consider the entire sequence of steps

involved in generating a machine learning model. This process includes loading data,

a variable number of data transformation and feature extraction steps, model con-

struction, and prediction. Figure 1-1 illustrates a data science pipeline, where the
2We present a detailed description of a realistic data science problem in Chapter 3.
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Figure 1-1: End-to-end pipeline to build a predictive model. It includes the prepro-
cessing and feature extraction steps along with the modeling steps.

sequence of steps is such that the input of step 𝑖 is the output of step 𝑖 − 1. We

define the term data science pipeline as this entire process, from inputting raw data

to constructing predictive models.

The AutoML community: One group attempting to address this problem is the

automated machine learning (AutoML) community, which is working to automate

traditionally manual machine learning decisions in order to both reduce data sci-

entists’ efforts and improve ultimate solutions. While a detailed overview of these

methods is included in Chapter 2, we highlight major points here. Work in this field

can be divided into two main (and often overlapping) themes: 1) design of the search

algorithm, and 2) open source software development and release.

Modeling step as primary focus: This community also focuses chiefly on the final

stages of the pipeline: model selection and hyperparameter tuning. A hyperparameter

of a machine learning method is distinct from the parameters learned during the

training process. While training parameters include learned parameters such as the

coefficients of a linear regression, a hyperparameter is a value set before the model

fitting begins. A hyperparameter can be a categorical (e.g., a kernel used in a Support

Vector Machine), integer (e.g., a degree of polynomial basis function), or continuous

value (e.g., step size in stochastic gradient descent), and some hyperparameters are

available only when other hyperparameters have been given particular settings. For

example, the degree of a polynomial kernel for an SVM is not available with a radial

basis function kernel. Many methods of hyperparameter tuning have been proposed,

and automated model selection remains an area of active research.

Search algorithm design: In pursuing the first set of goals, researchers focus pri-

marily on reducing the number of hyperparameter sets to evaluate, because each test

17



of these multidimensional functions can be extremely expensive. To evaluate alter-

nate search algorithm designs, this community constructed multidimensional black

box functions on which to test search algorithms, and benchmark datasets on which

to report system performance. Most benchmark datasets are arguably far removed

from real world, industrial scale problems.

Data input representation: The AutoML community has typically focused on

only a stylized subset of data science methods, either optimizing within the space of

classifiers or regressors, or tuning only pipelines with featurized datasets in matrix

format.

When building their systems, AutoML researchers typically either 1) treat the

function to be optimized (model performance) as a black box, or 2) treat the model

construction process itself as a black box, providing and choosing between data science

pipelines outside of the user’s view. Their system APIs focus either on improving the

algorithm itself or providing out-of-the-box solutions to problems.

Real world data science problems, however, have characteristics that challenge

these approaches:

∙ Realistically, most data scientists spend more of their time at the earlier stages of

the pipeline, such as pre-processing and feature extraction, than at the modeling

stage. Because decisions made at these stages can significantly impact accuracy

and are often made in an ad hoc fashion, any automated solution should include

the full end-to-end pipeline and test its efficacy on realistic problems.

∙ Because of the size of datasets in practice and the computationally intensive

nature of earlier stages of pipelines, evaluating each pipeline can be computa-

tionally expensive, and multiple pipelines must be assessed for tuning.

∙ Including the feature extraction and preprocessing stages in automated solutions

requires the incorporation of non-standard methods whose implementations do

not have well-defined APIs. These methods can be hard to find and are often

scattered across programming libraries.
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∙ Realistic datasets include a combination of multiple data types, such as images,

text, and relational data, and may have temporal components. This data cannot

always be presented as a clean, labelled matrix, as is expected by most software

systems.

1.2 Deep mining

In building Deep Mining, we address these challenges by taking a contrarian approach

to both the theoretical and implementational aspects of AutoML.

Provide efficient computation in order to scale to realistic datasets: While

Deep Mining uses sophisticated methods to reduce the number of hyperparameter sets

evaluated, we also incorporate subsampling methods and distributed computation

to reduce the time needed for the evaluation of each hyperparameter set. Rather

than improving the algorithms supplying hyperparameter sets to be evaluated, our

theoretical work in this thesis focused on reducing the time needed for the evaluation

of each hyperparameter set.

Provide immense flexibility to design an arbitrary custom pipeline: From a

systems perspective, we neither treat the data science pipeline performance as a black

box nor deny users access to their choice of pipelines. Rather, we provide a simple

API that specifies custom data science pipelines for a variety of data types, enabling

domain experts to both use existing data-specific feature transformers and contribute

their own. In both cases, we “open the black boxes” to take advantage of significant

performance improvements overlooked in traditional literature and systems.

The goal of the Deep Mining system is not to pursue superior out-of-the-box

performance on existing small-data benchmarks, but to allow users the flexibility

to implement custom pipelines that are appropriate for specific applications and to

provide the distributed computation structure with sampling methods that allow them

to apply these pipelines to substantial datasets. Potential applications include the

Human Vision and Biometrics communities, which employ pipelines with complex,

custom feature construction methods.
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Provide flexibility of inputs: In addition to providing a distributed, open-box

system, we also enable hyperparameter tuning in feature engineering methods by al-

lowing data to be inputted not only in the traditional matrix structure, but also in

raw data formats such as text, image, audio, and relational datasets. Existing hy-

perparameter tuning systems typically accept data only in matrix format, providing

either 𝑋 and 𝑌 matrices or matrices in a cross validation split. By enabling more

costly data science pipeline steps to be tuned through a distributed framework, we

facilitate the inclusion of feature processing methods that do not operate on data in

this matrix format, but rather on raw data files. For example, the feature extrac-

tion tools provided by Deep Feature Synthesis [23] operate on data from relational

databases. In Deep Mining, we use a structure based on the under-development D3M

data format and build a parser to allow for the inclusion of datasets in non-matrix

format.

The resulting system includes novel hyperparameter tuning techniques that use

Copula processes, a distributed computation framework that incorporates Apache

Spark and other tools, subsampling methods that dramatically improve the asymp-

totic complexity of the tuning process, an API that allows for the tuning of custom

data science pipelines using raw datasets, and an open-source framework that in-

cludes the contributions of data science domain experts, statisticians, and systems

programmers.

1.3 Contributions

The contributions of this thesis are as follows:

1. Explored the use of subsampling techniques and developed an algorithm using

Bag of Little Bootstraps (BLB) for pipeline evaluation

2. Evaluated the effectiveness of BLB evaluation for data science pipelines, using

multiple custom pipelines to empirically demonstrate that performance improve-

ments are comparable to pipeline evaluations on the entire dataset
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3. Designed and built an open source system for constructing and tuning arbitrary

pipelines on large, non-matrix datasets by

(a) enabling a structured approach to pipeline construction;

(b) providing a distributed system capable of running multiple parallelization

techniques for hyperparameter optimization of entire pipelines on local or

cluster computing resources;

(c) establishing clear abstractions for incorporating a variety of data types and

for contributing across application areas.

1.4 Previous Work

Previous work done by Sébastien Dubois on Deep Mining involved implementing

the Gaussian Copula Process model described in section 4.2, as well as much of the

search framework for black-box function tuning. In this system, users simply speci-

fied a scoring function along with function parameters and ranges. This framework

treated the pipeline scoring as a black box, proposing new parameter sets to the

scoring function, receiving function values in return, updating the Bayesian model,

and proposing new hyperparameter sets according to the chosen acquisition function.

This work established the viability of the GCP model for modeling hyperparameter

spaces for tuning.

My initial work on the project included documenting and editing this existing

codebase, which was functional and included examples of tuning functions such as

the Branin and Hartmann 6D, as well a Random Forest Classifier using the black box

function format.

1.5 Outline

In this thesis, I will

1. Examine the existing hyperparameter optimization community, detailing the
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search algorithms and meta-modeling approaches used as well as any currently

available tuning systems;

2. Describe Gaussian Processes and their extension, Gaussian Copula Processes,

for modeling the space of hyperparameters;

3. Give an overview of the goals of the Deep Mining project and the sampling

approach used to speed pipeline evaluation;

4. Describe work done on the Deep Mining system prior to this thesis;

5. Give a structure for composing arbitrary pipelines using utilities from scikit-

learn;

6. Describe the Bag of Little Bootstraps algorithm for sampling-based estimation;

7. Detail parallelization methods and frameworks used in Deep Mining;

8. Illustrate the use of the Deep Mining system through examples using the current

API;

9. Present results from experiments with the use of sampling-based pipeline eval-

uation in hyperparameter optimization;

10. Provide a discussion of future work and possible implications.
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Chapter 2

Background and Related Work

Today’s machine learning algorithms provide insights in a number of diverse fields,

from computer vision to recommender systems. However, these algorithms have

hyperparameters that need to be set before training a model, the values of which

can drastically affect performance. This distinction has spawned an entire discipline

within data science that seeks to find the most effective values for these hyperparam-

eters.

Consider a function 𝑔(h), where the function’s output is a measure of how well a

machine learning pipeline is performing on the data. This output is usually measured

using a scoring function that measures the accuracy of the model on the data. The

machine learning method/pipeline has certain hyperparameters, h 1. The goal of

hyperparameter optimization is to find the settings of the vector h that maximize

(minimize) the scoring (loss) function 𝑔(h). Subject to a specified range 𝑅 for h:

argmin
x

𝑔(h)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 h ∈ 𝑅

(2.1)

The hyperparameter optimization community has been extremely active in recent

years, providing novel algorithms and systems to accelerate the automated model
1These are called hyperparameters, and they are distinct from the parameters learned during the

model training process.
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selection and tuning process. Generally, the setup is as follows:

A search algorithm is given a multi-dimensional, black box function, 𝑔(h) 2 and

ranges for each input dimension ℎ. A hyperparameter set consists of values for each

of the input dimensions, which correspond to the different hyperparameters. Given

this set of inputs, the black box function is called to give a resulting score. The

goal is to find argmin
h

𝑔(h) in the shortest possible time, which researchers frequently

equate with the lowest number of hyperparameter set evaluations. Often, researchers

then build systems on top of these algorithms, either querying the evaluation of the

black box function in a style similar to active learning, or choosing the function(s)

themselves by implementing different machine learning methods.

In this chapter, we will describe the following areas:

∙ Search algorithms

Current mathematical approaches to hyperparameter tuning, including conven-

tional search algorithms and popular meta-modeling techniques.

∙ Types of black box functions tackled

How many different types of machine learning problems/pipelines have been

addressed so far

∙ Existing optimization systems

Current hyperparameter optimization systems, including their choices of search

algorithms, meta-modeling techniques, 𝑔(h), and apis.

2.1 Search Algorithms and Meta-modeling

Data scientists may choose hyperparameters manually, using a combination of guess-

work and prior experience and allocating considerable time to the optimization of

individual methods. Alternatively, they may adopt a more exhaustive, systematic

2The entire machine learning pipeline is encapsulated in this black box function, returning the
score of the pipeline as output.
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approach, choosing to search through every possibility in the hyperparameter space.

This space can be visualized as a “grid” of sorts, with each hyperparameter comprising

one of the grid’s axes. Note that in this and many search frameworks, hyperparam-

eters with infinite possibilities must be constrained to specific ranges. Grid search,

then, explores every possibility in this constrained space by evaluating the pipeline

over all of the hyperparameter sets in the grid. For machine learning applications,

where the data and hyperparameter space can be quite large, this method quickly

becomes intractable, as a particular hyperparameter set can take hours or even days

to evaluate. Even with sparse grids and few hyperparameters, the space can include

thousands of possibilities, each of which can take a non-trivial amount of time to test.

This complexity translates to an extremely high cost, providing the motivation for

reducing the number of points in the grid that must be evaluated in order to achieve

best possible score in a given time.

One alternative to this search method is a random search [3] in which data scien-

tists explore the hyperparameter space by choosing hyperparameter combinations at

random until sufficient coverage of the grid is reached or a time budget is expended.

This random search has been shown to significantly improve on a grid search, dramat-

ically decreasing the number of evaluations of hyperparameter sets needed by simply

sampling uniformly from the hyperparameter space.

What if there were a way to more intelligently select regions of the hyperparameter

space to explore? Rather than simply choosing points in the grid at random, adaptive

search processes seek to identify and explore regions of the hyperparameter space

that promise to improve the objective at hand by taking previous hyperparameter

evaluations into account.

2.1.1 Meta-modeling Approach

To identify promising regions of the hyperparameter space, various meta-modeling

approaches have been introduced. In these approaches, a mathematical model of the

space is constructed and used to estimate the score on candidate hyperparameter sets,

without actually evaluating the actual pipeline on the data. These heuristics make
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a trade-off between exploration and exploitation in choosing hyperparameter sets to

evaluate next.

One such approach is Bayesian optimization, which treats the black box function,

a scoring function of the hyperparameters, as an unknown. Bayesian optimization

places a prior over the black box function that captures beliefs about its behavior,

updates it with observations, and uses the resulting model and a chosen acquisition

function to choose the next set of promising points in the space. The next set is tried

by setting the hyperparameters for the pipeline, executing the pipeline, and generat-

ing the score. This evaluation results in new data points that can be incorporated

to update the prior to form a posterior distribution, which is then used in the con-

struction of an acquisition function and determines which part of the hyperparameter

space to explore next. We discuss the Gaussian Process (GP), and the associated

acquisition functions used for this type of hyperparameter optimization, in section

4.1 [5, 39].

Hyperparameter optimization is an active research field and has incorporated

many other methods of modeling and exploration. This summary is not intended

to give a comprehensive list of hyperparameter tuning methods, but rather a coarse

overview of current methods. Multi-armed bandit methods have been used to model

the space of different hyperparameter sets [26]. The Tree of Parzen Estimators has

been used, along with the Expected Improvement acquisition function, modeling the

posterior indirectly using 𝑝(𝑥|𝑦) and 𝑝(𝑦) rather than modeling 𝑝(𝑦|𝑥) directly as

in Gaussian processes [5]. Reinforcement learning has been used on neural network

architectures [2], and gradient descent has been shown to be effective for some con-

tinuous hyperparameters [27]. The radial basis function has also been used [12], as

well as a spectral approach that improves on the asymptotic complexity of the GP

fitting process [19]. Multi-task Gaussian processes have been applied to Bayesian

hyperparameter optimization to incorporate information from previous optimizations

[41], and transformations have been applied to construct a more flexible prior for the

Bayesian optimization [40].
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2.2 Choices of 𝑔(h)

A data science pipeline involves many different steps in addition to the machine

learning method used to learn a model. Throughout this thesis, we make a distinction

between machine learning pipelines and data science pipelines that is not often made

explicit in existing literature. Consider a pipeline consisting of only a Support Vector

Machine (SVM) classifier to be tuned. Data is expected to be delivered in the 𝑋 and 𝑦

format, where 𝑋 is a matrix of features and 𝑦 is a vector of labels. While this method

can be called a pipeline, the term is misleading because the method consists of only

one step. Extending one step further, the pipeline may also incorporate Principal

component analysis (PCA), scaling the feature matrix in addition to SVM. However,

we would still call this a machine learning pipeline.

In practice, data science pipelines extend to earlier steps in addition to what

machine learning pipelines entail. For example, they typically include preprocessing

and feature extraction steps such as Bag-of-words (for natural language) or HOG

feature extraction (in case of images).

With that distinction, we can classify different systems as either those focused

on machine learning pipelines and those that can be extended to entire data sci-

ence pipelines. It is worth noting that the kind of pipelines they incorporate has

implications on the data domains and representations they can address.

2.3 Current Hyperparameter Optimization Systems
Given the varied choices of 𝑔(h) and search algorithms, in this section we will ex-

amine the currently available open source frameworks, noting their explicit and im-

plicit choices. Hyperparameter optimization systems typically take one of two “black

box” approaches. In the first case, they treat the performance of a machine learning

pipeline as a function for which they provide inputs (hyperparameter sets) and receive

an output value (e.g. a scoring metric). These systems place the burden of pipeline

implementation entirely on the user. Arguably, this abstraction can aid in tuning

entire data science pipelines as well. Figure 2-1 presents a schematic for this abstrac-
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tion. Table 2.3 describes systems that use this framework, including Spearmint, the

startup SigOpt, MOE, SMAC, BayesOpt, REMBO, and HPOlib.

Table 2.1: (Approximate) Classification of current state-of-art Hyperparameter Sys-
tems. BB refers to the type of api or the black box function method they use. BB= 1
implies that the api is as shown in Figure 2-1 and BB= 2 implies that the system has
api as shown in Figure 2-2.

System BB Implementation Paper
Spearmint 1 https://github.com/HIPS/Spearmint Various

SigOpt 1 https://sigopt.com/getstarted [11]
MOE 1 https://github.com/Yelp/MOE [46]

SMAC 1 https://github.com/automl/SMAC3 [21]
BayesOpt 1 https://github.com/rmcantin/bayesopt [28]
REMBO 1 https://github.com/ziyuw/rembo [44]
HPOlib 1 https://github.com/automl/hpolib [15]

Hyperopt 1 https://github.com/hyperopt/hyperopt [4]
Hyperopt-sklearn 2 https://github.com/hyperopt-sklearn [25]

Auto-WEKA 2 http://www.cs.ubc.ca/labs/beta/Projects/autoweka/ [42]
Hyperband 2 https://github.com/zygmuntz/hyperband [26]

TPOT 2 https://github.com/rhiever/tpot [33]
Auto-sklearn 2 http://automl.github.io/auto-sklearn/stable/ [17]

Osprey 2 https://github.com/msmbuilder/osprey [29]
Optunity 2 https://github.com/claesenm/optunity [9]

mlr 2 https://github.com/mlr-org/mlr [6]
Scikit-optimize Other https://github.com/scikit-optimize/scikit-

optimize
[16]

While this approach allows users the flexibility to implement arbitrary pipelines,

it also has multiple problems:

∙ The lack of an API for specifying pipelines and exposing hyperparameters results

in significantly increased user effort in constructing pipelines.

∙ Because users are responsible for implementing the pipeline and processing the

data, their implementation is what determines the efficiency of the hyperpa-

rameter optimization process. No framework is provided for them to accelerate

the hyperparameter set evaluations.

∙ The question of importing data is entirely ignored, forcing users to spend time

aggregating and formatting data.

In the other typical approach to hyperparameter optimization, system designers

choose a predefined set of implemented pipelines, requiring input data to be in a
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Figure 2-1: Illustration of the first common abstraction approach. The optimiza-
tion algorithm gives hyperparameter sets to and gets performance metrics from the
pipeline, which it treats as a black box.

Figure 2-2: Illustration of the second common abstraction approach. The user pro-
vides data in a matrix format (either 𝑋, 𝑌 , or 𝑋 and 𝑌 in a cross validation split).
The optimizer chooses a pipeline from within its implemented machine learning algo-
rithms, and returns a classifier or pipeline with the highest score to the user.

matrix format. Users of the system cannot include custom pipelines that they judge

to be appropriate for their problem, and these systems constrain them by forcing

them to choose among a set suite of classifiers or regressors, as well as the occasional

feature preprocessing method. Figure 2-2 illustrates the schema for this abstraction.

These systems are effective in many small, matrix-formatted datasets, achieving

impressive results on benchmark datasets such as MNIST. However, for applications

on large datasets in non-matrix format (e.g., relational databases), these systems

are less well-suited, and the lack of clear APIs to specify custom pipelines severely

limits their effectiveness. Examples of systems in this style are noted in Table 2.3,

and include hyperopt-sklearn, Auto-WEKA, Hyperband, TPOT, Auto-sklearn, Os-

prey, Optunity, and mlr. Scikit-optimize provides an API for potentially arbitrary

pipelines using scikit-learn’s Pipeline interface, but the system’s lack of subsampling,

parallelization frameworks like Apache Spark, and incorporation of raw data limits

its effectiveness.
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Chapter 3

Deep Mining: Overview

To explain the considerations motivating the Deep Mining system, we consider a

problem faced by a data scientist in practice: face recognition. In this situation, the

data scientist is provided images of a variety of faces and has the goal of predicting to

which person a given facial image belongs. Assuming all of the hyperparameter opti-

mization systems from section 2.3 are available, this process consists of the following

steps:

1. Compose a pipeline

First, a data science pipeline is chosen. This process includes choosing prepro-

cessing and feature extraction methods as well as a classifier 1. In the first stage

of this pipeline, the images are put through photometric normalization using one

of four methods: contrast limited adaptive histogram equalization (CLAHE),

the multi-scale retinex algorithm, the discrete cosine transform (DCT) algo-

rithm, or the single scale self quotient (SQI) image algorithm. In the second

stage of this pipeline, features are extracted using local binary patterns (LBP),

local phase quantization (LPQ), histograms of oriented gradients (HOG), and

binarized statistical images (BSIF). Finally, these features are consolidated us-

ing Principal Component Analysis (PCA) or Latent Dirichlet Allocation (LDA),

1The following pipeline example was provided by Thomas Swearingen and Dr. Arun Ross of
Michigan State University’s i-PRoBe Lab and has been incorporated into Deep Mining. We want to
thank Thomas and Dr. Ross for their help in implementation and testing.
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Figure 3-1: Illustration of the portion of the facial recognition pipeline to optimize.

and either a Random Forest Classifier or Support Vector Machine (SVM) is ap-

plied to the data.

2. Implement the chosen pipeline

Next, the data scientist must implement this pipeline by constructing its custom

steps, writing wrapper functions for feeding the intermediate transformations to

subsequent pipeline steps, fitting classifiers, and outputting the eventual score.

This process involves either writing the code from scratch or copying code for the

desired pipeline steps from other libraries. Both choices may involve significant

debugging in both constructing the steps and placing them inside a pipeline.

3. Import dataset

After this implementation, the data scientist must import this dataset in a

format suitable for the constructed pipeline.

4. Specify hyperparameters and ranges

Once the pipeline has been chosen, the data scientist must ensure that the hy-

perparameters for each of the step are exposed. The data scientist also chooses

possible ranges for each of the hyperparameters, confining the search within

those bounds.

5. Tune hyperparameters

The data scientist can now tune the hyperparameters of the pipeline, using

either a manual search or an existing hyperparameter tuning system. In this
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example, because the pipeline has custom steps and includes more than con-

ventional feature transformations (e.g., PCA, LDA) and classifiers, the data

scientist can use a system in the “black box function” paradigm, in which he

provides a scoring function interface and tests inputs suggested by the hyper-

parameter optimizer.

6. Speed up pipeline evaluation for hyperparameter tuning

The hyperparameter optimizer requires scores for dozens of hyperparameter

sets in order to build a meta model and tune the whole pipeline. Because the

pipeline is computationally intensive and the dataset is large, evaluation of each

of these sets can take hours. In order to find a solution in a reasonable time,

the data scientist often implements a parallelization framework for simultaneous

hyperparameter set evaluation by launching multiple worker machines (say, on

an Amazon cluster) and writing supporting software.

If the pipeline evaluation remains too slow, the data scientist implements sam-

pling techniques to further speed up this process, getting approximate scores

for hyperparameter sets by using only parts of the dataset. He chooses these

parts arbitrarily, taking random subsamples of the original data.

7. Output predictions for new data

Finally, the data scientist receives the highest-scoring hyperparameter set and

trains a model with those hyperparameters, altering his existing pipeline code

if necessary. He then outputs his predictions on new data, either noting the

pipeline performance on this new data or using these newly formed predictions

in production.

This process illustrates a number of the difficulties that data scientists will face

even with the widespread availability of hyperparameter tuning systems. Lack of

automation and support in each of these steps makes for a labor-intensive and error-

prone process. Constructing a pipeline is difficult without examples from domain

experts for similar problems, and importing raw data into the matrix format required
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by many machine learning methods takes significant time. Many existing hyperpa-

rameter optimization systems are entirely unsuited to this particular domain-specific

problem, and the black box function API provides no support for pipeline specifica-

tion. Real-world problems require efficiently evaluating hyperparameter sets, and the

data scientist may spend significant time implementing a parallelization and sampling

framework to speed up the model evaluation process. Even after he has found the

best hyperparameters in the space, using that information to train a model and make

predictions requires additional software construction and debugging.

To solve this problem, we propose Deep Mining, a system for sequential hyperpa-

rameter optimization that scales to complex pipelines and large datasets and provides

the necessary frameworks for solving the particular problems data scientists face. In

this thesis, we also describe an alternative approach to accelerating hyperparameter

optimization using a subsampling algorithm called the Bag of Little Bootstraps.

3.1 Sampling-based Approach for Hyperparameter

Search

Much of hyperparameter optimization theory focuses on improving the models and

algorithms exploring the hyperparameter space. In this framework, the focus is on

reducing the number of hyperparameter sets evaluated. However, the ultimate goal of

these automated model selection methods is to reduce the human and computational

time it takes to optimize, and the number of model evaluations is only a proxy for

that metric. The contrarian approach we outline in this work is to reduce the time

needed for the evaluation of a single hyperparameter set. We reduce this time using

two methods: 1) intelligent sampling, and 2) distributed computation. By focusing

on reducing the time necessary for each model evaluation along with intelligently

choosing hyperparameter sets, Deep Mining significantly improves the time needed

for hyperparameter optimization.

Existing work related to this approach includes the Apache Spark MLLib package
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[31], which executes a grid search of hyperparameters in a distributed fashion. Work

has also been done in deep neural networks to extrapolate the learning curve in

early epochs so as to stop model evaluations that are not promising [13]. Multi-task

Bayesian optimization is also promising, as hyperparameter evaluations on smaller

datasets are used to predict performance on larger datasets [41]. The effects of random

sampling on hyperparameter optimization have also been explored [20].

3.2 The Deep Mining System

Deep Mining is an automated system that begins with raw or matrix-formatted data

and ends with a tuned predictive model. Figure 3-2 illustrates the Deep Mining

system, detailing its major components and their interactions, which aim to provide

the functionalities neglected by existing hyperparameter tuning systems.

The end-to-end system in Deep Mining provides these essential functionalities:

solving the difficulties that come with non-standard pipeline specifications and im-

plementations, allowing importing of a variety of datasets, exposing hyperparameters,

speeding up hyperparameter tuning, and aiding the use of pipelines in production.

In this project, we explore these functionalities along with higher-level goals.

This project spans various research areas: meta- machine learning (by pursuing

novel meta modeling techniques using copulas), systems engineering (by incorporat-

ing data and distribution frameworks to enable parallel computation), human-data

interaction (by designing an API that enables domain experts to share, compose and

tune novel/arbitrary pipelines), statistics (by incorporating sampling bootstrapped

estimation), and ultimately artificial intelligence (by pursuing automation of steps

otherwise performed by data scientists).

State-of-the-art model of the hyperparameter space: To provide a competitive

hyperparameter tuning system and to efficiently select points in the hyperparameter

space for evaluation, the model of the hyperparameter space and the resulting acqui-

sition algorithm must improve upon existing methods. The Gaussian Copula Process

provides this improvement by supplying a transformation to the Gaussian process
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Figure 3-2: Illustration of the Deep Mining system’s functionality. The user specifies
a pipeline using the provided framework, providing hyperparameter ranges and the
necessary pipeline steps to the pipeline constructor and executor. The user also pro-
vides the data in either raw or matrix format and cross-validation parameters to the
data loader as well as optimization parameters to the Bayesian optimizer. Outside of
the user’s view, Deep Mining constructs a scoring function using the provided pipeline
and parameters, incorporating distribution and sampling to accelerate the evaluation
process. Deep Mining also loads the data into a cross validation split for the pipeline
executor, which chooses between different parallel and non-parallel evaluation meth-
ods that return a score to the pipeline executor. The Bayesian optimizer interfaces
with the pipeline executor, suggesting hyperparameter sets to evaluate given scores
for previous sets. Within the Bayesian optimizer, the Smart Search algorithm pro-
vides previous hyperparameters 𝐻 and associated scores 𝑔(ℎ) to the GP or GCP
model, receiving an estimate 𝑔(ℎ) of the scoring function in return. Finally, the
pipeline executor returns the tuned pipeline and (optionally) tested hyperparameters
and associated performances. In this figure, the labels are as follows: (1) corresponds
to the hyperparameter ranges; (2) to the (custom) pipeline steps; (3) to the tested
hyperparameters and associated performances; (4) to the pipeline with the best hy-
perparameter set; and “P + D + Params” to the scikit-learn Pipeline object, data,
and BLB hyperparameters.
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system that allows for the flexible marginal distributions appropriate for models of

the hyperparameter space. We describe this method in detail in Chapter 4.2.

Sampling algorithm to accelerate model evaluation: We use a model selec-

tion algorithm derived from Bag of Little Bootstraps, a sub sampling based approach

that evaluates functions of data (over sub samples) with the same statistical guaran-

tees as the traditional bootstrap. The Bag of Little Bootstraps algorithm provides

a significant asymptotic improvement to the evaluation of hyperparameter sets for a

variety of algorithms by taking advantage of weighted representations of data. We

experiment with using this system to show that even with these asymptotic improve-

ments, the improvement in model performance from hyperparameter tuning remains

comparable. We describe this method in detail in Chapter 6.

Distributed computation for parallel execution: Executing pipelines in a par-

allel, distributed fashion significantly speeds up the evaluation process. By using

frameworks including Apache Spark, we can compute either the pipeline score on

multiple bootstrap in parallel or compute scores for multiple different pipelines in

parallel. Deep Mining provides hyperparameter optimization at the scale demanded

by modern applications. We describe our parallelization framework in detail in Chap-

ter 7.

Abstractions for arbitrary datasets and pipelines: Deep Mining offers an al-

ternative to the black box approaches used by existing hyperparameter systems by

allowing composition of arbitrary pipelines and allowing ingestion of different data

types. Using the Pipeline interface from scikit-learn [35] and a custom API, users

specify arbitrary pipelines operating either on matrices (as in other systems) or on

the raw data itself, seamlessly enabling the tuning of feature engineering methods that

are unavailable in other auto-tuning systems. We describe how to compose arbitrary

pipelines using our api in Chapter 5.

As a consequence of this approach, we do not seek out performances on benchmark

datasets to show the superiority of our tuning algorithm or machine learning method

suite. Instead, we enable pragmatic applications such as face recognition. By using a

standardized format for the storage of raw data, Deep Mining allows for the tuning of

37



feature extraction methods that do not operate on data in matrix format and provides

utilities for using the tuned model in production.

Open-source software for collaborative data science: By providing abstractions

for constructing and combining custom pipeline steps, Deep Mining incorporates the

input of various domain experts. Domain experts can contribute to the library by

providing custom pipelines and software for data transformations. Systems program-

mers can contribute in tuning the distributed frameworks used, and statisticians can

improve existing copula processes and subsampling methods.
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Chapter 4

Gaussian Copula Processes

In this chapter, we will describe the Gaussian process (GP), which is often used to

model the hyperparameter space, and introduce Gaussian Copula Processes (GCP)

as an improvement on traditional GP, detailing algorithms used by Deep Mining

in hyperparameter search. The author acknowledges Kalyan Veeramachaneni and

Sébastien Dubois for their development of and help in describing the GCP method

[14].

In this chapter, we use 𝑥 as the input vector, 𝑦 as the outcome that GP or GCP

is trying to model, and 𝑓 as the unknown function that relates 𝑓(𝑥) ← 𝑦. In the

context of hyperparameter tuning they are ℎ, 𝑦, and 𝑔 respectively.

4.1 Gaussian Processes

The Gaussian Process is a non-parametric method that allows for inference over the

continuous space of functions. The chief insight it provides for tuning purposes is

that it allows for the construction of a Bayesian model of the hyperparameter space

that updates with additional observations and is not confined to a specific functional

form. Much of the background in this section is based on work in [36], which can

provide additional detail.

Definition 4.1.1. Gaussian Process (GP) A collection of random variables, any finite

combination of which has a multivariate Gaussian distribution.
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A GP can be completely defined by its mean and covariance functions, which are

functions of (multidimensional) locations in the input space. The mean function at a

location x in the space is:

𝑚(x) = E[𝑓(x)] (4.1)

and the covariance function is:

𝑘(x, x′) = E[(𝑓(x)−𝑚(x))(𝑓(x′)−𝑚(x′))] (4.2)

The mean function is the average of the known function 𝑓 values and is typically

taken to be zero, assuming centered data. A typical covariance function used is the

Squared Exponential (SE) covariance function:

𝑐𝑜𝑣(𝑓(x), 𝑓(x′)) = 𝑘(x, x′) = 𝑒𝑥𝑝(−1

2
|x− x′|2) (4.3)

The function in the hyperparameter search case is the model performance (e.g.,

accuracy) or loss, and the Gaussian process is used as a prior for that function over

the hyperparameter space. Predictions in this space are made using a posterior dis-

tribution that has been conditioned on hyperparameter sets x1, ..., x𝑁 and their as-

sociated performances 𝑓(x), ..., 𝑓(x𝑁). The posterior distribution is used to evaluate

acquisition functions for a number of candidates in the space, and the value of these

acquisition functions is used to determine which hyperparameter set should be evalu-

ated next, based on the data and the machine learning method to be tuned. I describe

those acquisition functions used in Deep Mining in Section 4.2.

The computational complexity of using a GP for hyperparameter optimization be-

comes clear upon examination of the expressions for the predictive mean and variance.

The predictive mean is then

𝐾(𝑋*,𝑋)[𝐾(𝑋,𝑋) + 𝜎2
𝑛𝐼]−1𝑦 (4.4)

where 𝐾(𝑋,𝑋) is the kernel matrix for all previous observations, 𝐾(𝑋*,𝑋) is the

kernel matrix between the points to be predicted 𝑋* and the observations 𝑋, 𝜎2
𝑛 is
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the observation noise (assuming 𝑦 = 𝑓(x) + 𝜖), 𝐼 is the 𝑁 x 𝑁 identity matrix, and

𝑦 is the vector of previous observations.

The predictive variance is

𝐾(𝑋*,𝑋*)−𝐾(𝑋*,𝑋)[𝐾(𝑋,𝑋) + 𝜎2
𝑛𝐼]−1𝐾(𝑋,𝑋*) (4.5)

The asymptotic complexity of this Gaussian process, then, is dominated by the

inversion of the 𝑁 x 𝑁 kernel matrix. This results in an overall complexity of 𝑂(𝑁3),

where 𝑁 is the number of (hyperparameter set, performance) observations. More

detail on the Gaussian Copula Process and other aspects of this thesis can be found

in the related published paper [1].

4.2 Gaussian Copula Process (GCP)

The Gaussian Copula Process, introduced in [45], is a prior based on a GP that can

more precisely model the multivariate distribution of 𝑓(x). A mapping Ψ : 𝒴 → 𝒵

transforms the output of 𝑓 into a new variable 𝑧. We define a new function 𝑔,

𝑔 : 𝒳 → 𝒵, and a combination of 𝑓 and Ψ given by 𝑔(𝑥) = Ψ(𝑓(x)); and we model 𝑔

with a GP.

By doing this, we actually change the assumed Gaussian marginal distribution of

each 𝑓(𝑥) into a more complex one. This is because the Gaussian prior on 𝑔(𝑥) yields

the prior for 𝑓(x) given by the following cumulative distribution function:

𝐹 (𝑦) = Φ(Ψ(𝑦)), (4.6)

where 𝐹 (𝑦) = P(𝑓(x) ≤ 𝑦) and Φ is the standard univariate Gaussian cumulative

distribution function.

So far in the literature [45, 38], a parametric mapping is learned so that 𝑔(𝑥) is

best modeled by a Gaussian Process. In [45], the authors propose to parameterize
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Ψ−1 by {𝑎𝑗, 𝑏𝑗, 𝑐𝑗} such that:

Ψ−1(𝑧; {𝑎𝑗, 𝑏𝑗, 𝑐𝑗}𝐾𝑗=1) =
𝐾∑︁
𝑗=1

𝑎𝑗𝑙𝑜𝑔
(︀
𝑒𝑏𝑗(𝑧+𝑐𝑗) + 1

)︀
, (4.7)

with 𝑎𝑗, 𝑏𝑗 > 0. The authors are interested in predicting the values of a positive

function 𝑓 . In the general case, we can add another variable 𝑚:

Ψ−1(𝑧; {𝑎𝑗, 𝑏𝑗, 𝑐𝑗}𝐾𝑗=1,𝑚) =
𝐾∑︁
𝑗=1

𝑎𝑗𝑙𝑜𝑔
(︀
𝑒𝑏𝑗(𝑧+𝑐𝑗) +1

)︀
−𝑚,

where 𝑚, 𝑎𝑗, 𝑏𝑗 > 0. For 𝐾 = 1 we then have :

Ψ(𝑦) =
𝑙𝑜𝑔(𝑒

𝑦+𝑚
𝑎 − 1)

𝑏
− 𝑐,𝑚, 𝑎, 𝑏 > 0. (4.8)

However, this mapping is unstable in practice: we found that over many trials on

the same dataset, different mappings were learned. Moreover, the induced univariate

distribution for 𝑓(x) was almost Gaussian most of the time, and the parametric

mapping did not offer great flexibility. We see in eq. (4.7) that for 𝐾 = 1, if

𝑏𝑧 >> 𝑏𝑐, 1, then Ψ−1(𝑧; 𝑎, 𝑏, 𝑐)∼ 𝑎𝑏𝑧, ie. the mapping is linear, and the GCP is

actually a GP.

Given this observation, we introduce a novel approach where a marginal distribu-

tion is learned from the observed data through kernel density estimation [37] of 𝐹 .

After this, the mapping Ψ is numerically computed from equation (4.6), so that the

observations of the training data 𝑔(𝑥𝑡,𝑖) have a Gaussian distribution:

Ψ(𝑦) = Φ−1(𝐹𝑒𝑠𝑡(𝑦)). (4.9)

As the mapping function is learned in a non-parametric manner, we call this novel

approach Non-Parametric Gaussian Copula Process (nGCP).
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Non-Parametric Latent GCP (nLGCP)

The prior mean of a Gaussian process is usually fixed as the empirical mean of the

observations 𝑓(𝑥𝑡,𝑖). In the context of hyperparameter optimization, however, one

can imagine that there should be some region where the hyperparameters would be

rather good and others where they would be rather bad. For this reason, it may be

convenient to set a different mean for the prior, depending on the region in which

the hyperparameter is. When it comes to GP, researchers assert that this alteration

would have little impact, as the covariance function is already meant to induce this

smoothness. With GCP, however, we not only fix the mean function, but the mapping

function as well. Because the mapping function reflects the distribution of the data,

with nGCP a latent model aims at learning several distributions of 𝑓(x) over the input

space. In particular, this change may facilitate the location of promising regions to

explore in a Bayesian optimization process.

We introduce a non-parametric Latent Gaussian Copula Process prior (nLGCP),

where the mapping function also depends on the input x. Intuitively, the goal is to

include in the prior not only the distribution 𝒟 of 𝑓(x) on the entire space 𝒳 but

the distributions 𝒟1, ..., 𝒟𝑘 of 𝑓(x) on 𝑘 regions of 𝒳 . This way, we design a prior

that truly depends on 𝑥 (in the previous equations, 𝑥 was only an index to denote

the random variable 𝑓(x)).

To design the nLGCP prior, we look for a mapping function that depends on the

input 𝑥 and output 𝑓(x). To construct this function, the training data {(𝑥𝑖, 𝑓(𝑥𝑖))}

are clustered in 𝒳 × 𝒴 ⊂ R𝑚+1 using K-means. For each cluster 𝑘, a mapping Ψ𝑘 is

learned, as described in the previous section. Then, for each 𝑥 in 𝒳 , the final mapping

Ψ is computed as

Ψ(𝑥, 𝑦) =
∑︁

𝛼𝑘(𝑥).Ψ𝑘(𝑦), (4.10)

where 𝛼𝑘(𝑥) = 𝑒𝑥𝑝(−𝑠
∑︀

( 𝑑𝑘
𝜎𝑘

)2), 𝑑𝑘 = 𝑑𝑖𝑠𝑡𝒳 (𝑥, 𝑐𝑘), 𝜎𝑘 = 𝑠𝑡𝑑𝒳 (𝒞𝑘), 𝑠 is a smoothing

coefficient, and 𝑐𝑘 is the projected center of the cluster 𝒞𝑘 on 𝒳 .
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Predictions with nLGCP

Predictions with GP are straightforward given a posterior, but this calculation is no

longer simple with nLGCP. A faster but approximate way to compute the predicted

value of 𝑓(𝑥*) for a given 𝑥* is to calculate 𝑔*, the standard GP prediction of the

warped output Ψ(𝑓(𝑥*)) given by the posterior: 𝑔(𝑥*) ∼ 𝒩 (𝜇*,𝜎*), Noting from

the equation (4.6) that the predicted cumulative distribution function of 𝑓(𝑥*) is

𝐹* = Φ(Ψ;𝜇*,𝜎*), we can evaluate the prediction as:

𝑓* =

∫︁ ∞

𝑢=−∞
𝑢.Ψ′(𝑢).𝜑(Ψ(𝑢);𝜇*,𝜎*).𝑑𝑢 (4.11)

where 𝜑𝜇*,𝜎* denotes the probability density function of a univariate Gaussian𝒩 (𝜇*,𝜎*).

The particular expression of Ψ in eq. (4.9) for the nGCP prior finally enables us

to express directly its derivative:

Ψ′
𝑛𝐺𝐶𝑃 (𝑦) =

𝑑𝑒𝑠𝑡(𝑦)

𝜑(Ψ(𝑦))
, (4.12)

where 𝜑 and 𝑑𝑒𝑠𝑡 are respectively the probability density function of the standard

univariate Gaussian and the one corresponding to 𝐹𝑒𝑠𝑡 defined in Section 4.2. We can

calculate the derivatives for Ψ𝑛𝐿𝐺𝐶𝑃 similarly.
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Chapter 5

Composing arbitrary pipelines

An overarching goal of this work is to enable the tuning of an entire pipeline, which

includes preprocessing, data transformations and feature extraction. This process

presents several challenges:

∙ Too many possibilities: When considering data science pipelines, numerous

possibilities exist for early-stage data transformations. Transformations can

be specific to domain or problem as well as specifically developed to mitigate

issues in data collection. Because of this variety, developing a fixed set of

transformations a priori is impossible. These steps also accept a variety of

inputs, such as data in non-matrix formats, that many existing tools cannot

incorporate.

∙ Unstructured process: Unlike software for machine learning algorithms, soft-

ware for these transformations are written by domain experts, who do not in

general construct the code for this part of the process in a structured and uni-

form way. This lack of structure and uniformity inhibits code sharing and slows

the development process.

A good pipeline specification must also be easy to use, in order to encourage adop-

tion and pipeline experimentation, and modular, allowing data scientists to combine

different components quickly.
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5.1 Abstractions for data transformation steps

Pipelines consist of series of data transformation steps ending with a modeling step

in which a machine learning model is trained and evaluated. We call the steps that

transform the data Transformers and the step that trains and evaluates the model

an Estimator 1. To be able to develop generalized abstractions for programmatically

defining transformers, we categorize them based on their input, output, and type of

computation involved.

Type of computation: Transformers can be classified into two groups:

∙ Direct methods: These methods allow transformations on data to be com-

puted using only the function and its hyperparameters without requiring any

learning of parameters from the data itself. An example of this type of method

is patch extraction from a collection of images. For this category of methods,

the applied transformation can be defined simply:

𝑓(𝑥𝑜𝑙𝑑) = 𝑥𝑛𝑒𝑤 (5.1)

where 𝑥 represents a single data point (a single image, a single text, or a feature

vector), and the function 𝑓 is applied to all data points in the entire dataset 𝑋.

∙ Fitted methods: Other transformers require parameters to be learned before

transformations can be applied to the data. An example of this type of trans-

formation is PCA, which must learn parameters from the structure of the data

before applying its transformations. Two sub-types of learning exist within this

methods:

– Fitting using individual data points: In this category, transformer

methods learn parameters from individual data points:

𝑝𝑎𝑟𝑎𝑚𝑠 = 𝐿(𝑥𝑜𝑙𝑑) (5.2)

1This is similar to the terminology used by a popular machine learning package, scikit-learn
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then apply a transformation function using those parameters:

𝑓(𝑥𝑜𝑙𝑑, 𝑝𝑎𝑟𝑎𝑚𝑠) = 𝑥𝑛𝑒𝑤 (5.3)

– Fitting using all data points: Transformer methods can also learn

parameters using the entire dataset and can be expressed as:

𝑝𝑎𝑟𝑎𝑚𝑠 = 𝐿(𝑋𝑜𝑙𝑑) (5.4)

then applying a function to the entire dataset using those global parameters

𝑓(𝑋𝑜𝑙𝑑, 𝑝𝑎𝑟𝑎𝑚𝑠) = 𝑋𝑛𝑒𝑤 (5.5)

PCA and Bag-of-words are examples of transformers that learn the pa-

rameters for the transformation function using all the data points.

Data input and output: Transformers vary in terms of the input data format they

accept. Data domains broadly fall into four categories, which each require a uniform

structure for designing transformers.

∙ Image data: For image datasets, regardless of the original data file type (e.g.,

jpeg, png), the raw image can be represented as a multidimensional array of

numeric values corresponding to pixels. A flattened representation of the images

represents each image as a row in a matrix. The intermediate transformations

for images therefore typically map between matrices of floating point or integer

values.

∙ Text data: For text datasets, the initial data can again be represented as a

matrix, where each row corresponds to a different text document (data point).

The data types within the matrix eventually change from strings to numeric

values. Transformations for text data, then, fall entirely within the categories

defined earlier in this section.
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∙ Relational Data: Relational data undergoes the most stark transformation

before eventual classification or regression. This type of data begins as a set of

tables, which are eventually consolidated into a feature matrix over the course

of the pipeline before presenting it to the classifier or regressor. Transformers

for relational data have more complicated mappings than the typical matrix-

to-matrix scheme, often going from “a set of tables” to a transformed “set of

tables” or consolidating “ a set of tables” into one. These transformations also

often require meta data about data types of the variables in the tables and the

relational structure between the tables. Combinations of these data types can

also have this characteristic, as the consolidation of varied data sources into an

eventual matrix format requires transformers with more complicated mappings.

Once data is in matrix format, all transformer methods once again fall into the

categories for image and text data.

∙ Time series data: In time series data, each data point is a collection of ob-

servation arrays along with an additional array corresponding to a time stamp,

sequence number, or order number for the values in the other arrays. Trans-

formers can output another time series given a time series or consolidate them

into a vector.

5.2 Abstractions for the pipeline

Once these Transformer and Estimator pipeline steps have been specified as Python

functions, a unifying framework is necessary to ensure that (1) intermediate outputs

are correctly piped between steps (2) the pipeline can be used for training and pre-

diction. Data scientists often construct a wrapper function that will take as input

all hyperparameters for the pipeline and data and contains the end-to-end training

pipeline code. This function outputs all of the “fitted” parameters across all steps. A

separate wrapper function that takes as input the learned set of parameters and data

is written to execute the pipeline given the learned parameters and produce predic-

tions. This customized code is not transferable to a new problems, and constructing
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these functions for each problem it is an error-prone and time consuming process.

A generalizable framework to solve this problem must allow users to:

∙ Easily compose the pipeline using only functions for each pipeline step without

constructing extensive wrapper functions

∙ Effectively expose hyperparameters for all pipeline steps,

∙ Provide a simple command to train or “fit” the pipeline steps, saving fitted

parameters and any meta data associated with the fitting process,

∙ Output a performance metric on a training dataset, and

∙ Provide a simple command to “predict” using the fitted pipeline.

5.2.1 Abstractions in scikit-learn

Scikit-learn, a popular machine learning software library, offers a powerful fit-transform

abstraction that greatly simplifies the process we describe above. It has the previously

mentioned two types of object: transformers and estimators.

Transformer objects transform the data, and must have fit and transform meth-

ods implemented, as the fit method allows them to learn parameters to be used for

transform. Given this object-oriented approach, a data scientist can

– Call transformer.fit_transform(X), which first “fits” using the data 𝑋 and

then outputs the transformed version of the data, 𝑋𝑛𝑒𝑤.

– Call transformer.transform(X), which uses the fitted parameters from trans-

forming 𝑋 to output 𝑋𝑛𝑒𝑤.

Principal Component Analysis (PCA) is an example of a transformer that must

fit itself before transforming the data. The fit method in PCA identifies the principal

vectors in the data, which are then used to transform the feature matrix. All trans-

former methods in scikit-learn are written this way, enforcing uniformity across

all functions.
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Estimators, which make predictions using a fitted model, must implement fit and

predict methods. Any machine learning classifier is an example of an estimator.

This fit-transform abstraction is also seen in various forms in other machine learn-

ing libraries, including Apache Spark’s MLlib and Keras [8].

With these abstractions and provided library of functions, scikit-learn allows the

user to do the following:

∙ Create arbitrary pipelines: A user can chain together multiple transformers,

provided the last step in each pipeline is an estimator method. Consider an

example in which a user has a pipeline consisting of steps A, B, and C, where

A and B are scikit-learn transformers and C is a scikit-learn estimator.

First, the pipeline object is constructed by specifying a list of the variables for

the pipeline steps. These variables denote objects on which the fit and transform

methods can be called.

pipeline = Pipeline([A, B,C])

Next, the pipeline hyperparameters are mapped to individual steps:

pipeline.set_params = {A__a1: 𝑣𝑎1, B__b1: 𝑣𝑏1,

C__c1: 𝑣𝑐1}

where 𝑎1 is a hyperparameter for step A and 𝑣𝑎1 is the corresponding name

specified for the same in the overall hyperparameter dictionary. Deep Mining

provides a wrapper to simplify this parameter setting, as detailed in section

5.4.1.

∙ Integrate training and validation: One of the advantages of setting up the

pipeline object and mapping up the hyperparameters as shown above is that

now users can call the same “fit” and “predict” functions provided for individual

steps to execute the entire pipeline. This functionality eliminates the need for

writing separate software for training and predicting.
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– Calling

pipeline.fit(X_tr, y_tr)

will transform the data sequentially in the order the steps are specified in

the pipeline. The fit_transform method is applied for each transformer,

and finally estimator is fitted on the resulting transformed data.

– The fitted pipeline can then be evaluated on the validation data and used

to make predictions:

score = pipeline.score(X_v, y_v)

predictions = pipeline.predict(X_v)

In both cases, 𝑋𝑣 is transformed with the pipeline’s intermediate steps

– using the transform method with parameters fitted from the training

process – and scored using the fitted estimator.

This example demonstrates the power of scikit-learn’s pipeline abstraction, as

once the pipeline has been constructed, only the fit and score methods of the

Pipeline object must be called.

Custom Pipeline Steps in scikit-learn

A potential problem with the pipeline abstraction is its strict structure, as users

would have to implement the fit and transform methods. However, scikit-learn pro-

vides the FunctionTransformer, TransformerMixin, and BaseEstimator classes to

streamline this conversion process.

The FunctionTransformer object takes an arbitrary transforming function as

an input and outputs a valid scikit-learn transformer, which implements the fit and

transform methods necessary for the pipeline object.

For transformers that also include a fitting process, the TransformerMixin class

can be inherited, and fit and transform methods can be implemented as desired.

The BaseEstimator class allows for the construction of arbitrary estimators, re-

quiring users to implement the fit and score methods.
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5.3 Advantages of pipeline abstraction

This pipeline abstraction also effectively exposes the pipeline hyperparameters. For

an arbitrary function 𝐴 that uses the FunctionTransformer objects, the hyperparam-

eters are simply the arguments of 𝐴 in the user’s implementation. For scikit-learn

transformers and estimators, the hyperparameters are already exposed in the imple-

mentation.

This abstraction greatly simplifies the data science pipeline construction process,

requiring only the implementation of the 𝑠𝑒𝑡_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 function and simplifying that

implementation using familiar tools. This construction has many benefits for data

scientists, including

∙ Standardizing the pipeline construction process, giving an intuitive template

and enforcing discipline on the often unstructured process of pipeline construc-

tion,

∙ Making pipelines modular, allowing steps to be interchanged arbitrarily as long

as each step provides a valid output for the following step,

∙ Accelerating training and testing by encapsulating the process into only two

function calls,

∙ Clarifying the steps and hyperparameters used in a given pipeline,

∙ Providing a framework flexible enough to handle arbitrary transformers and

estimators, and

∙ Enabling code-sharing through the use of a simple, modular template.

More generally, the pipeline construction is as described in Algorithm 1. Once

the user has specified this function, Deep Mining calls the 𝑓𝑖𝑡 and 𝑠𝑐𝑜𝑟𝑒 functions

as appropriate, incorporating sampling, cross validation, and information from other

function arguments.
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Algorithm 1: General pipeline construction
1 𝑠𝑒𝑡_𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 (𝑋_𝑡𝑟, 𝑦_𝑡𝑟,𝑋_𝑣, 𝑦_𝑣, hyperparam_dict);

Input : Data provided in a train-validation split (𝑋_𝑡𝑟, 𝑦_𝑡𝑟,𝑋_𝑣, 𝑦_𝑣)
and a dictionary of hyperparameters to evaluate

Output: pipeline object
2 step1 = Transformer1()
3 ...
4 step𝑛 = Estimator()
5 pipeline = Pipeline([step1,step2,....step𝑛])
6 pipeline.hyperparams =

{step1_hyperparam1: hyperparam_dict[pname1], ... ,
step1_hyperparam𝑘: hyperparam_dict[pname𝑘], ... ,
step𝑛_hyperparam𝑛: hyperparam_dict[pname𝑛]}

7 return pipeline

5.4 Pipeline Construction in Deep Mining

The DeepMine function executes hyperparameter optimization on the provided pipeline

and data and exposes a variety of arguments. After loading the data into a Python

object and splitting into training and validation sets, users specify the desired pipeline

and optional parameters to execute a Bayesian tuning of their pipeline. This function

uses the scikit-learn Pipeline object.

Defining a custom pipeline involves three steps:

1. Constructing custom functions

In Deep Mining, arbitrary transformer functions can be included in the pipeline

to be tuned. The only constraint on custom transformer functions is that the

output of the specified transformer must be a valid input for the subsequent

transformer or estimator step. When specifying these functions, users pass the

input data as the first argument to the function with exposed hyperparameters

as the other arguments, using default arguments as necessary. Using the Func-

tionTransformer object, 𝑋 and 𝑌 parameters are passed to the fit_transform

methods of these transformers, creating a transformed 𝑋 output that is valid

for the next step. When the validate parameter of the FunctionTransformer

initializer is False, any Python object can be passed as 𝑋 to the transformer
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object’s methods. While some cross-validation split into 𝑋 and 𝑌 matrices is

required, many relational datasets can be incorporated by defining necessary

metadata as arguments to the specified transformer function.

Arbitrary estimators can also be included in Deep Mining pipelines by using

the instructions for creating custom scikit-learn estimators here.

2. Defining which hyperparameters to tune and their respective ranges

To specify hyperparameters and desired ranges, users construct a dictionary

with hyperparameter names as keys. Values are two-element lists: the first

element is a string corresponding the variable type (cat for categorical, int for

integer, and float for continuous), and the second element is either the inclusive

bounds for the hyperparameter (for integer and continuous values) or all of the

values the hyperparameter can take (for categorical values).

3. Specifying the pipeline object

To define the pipeline to be tuned, users define a function whose input is a

hyperparameter dictionary with the following form: { hyperparameter_name:

hyperparameter_value. The output of this function is a scikit-learn Pipeline

object with hyperparameters set using the provided hyperparameter dictionary

as input.

5.4.1 Custom Pipeline Example

In this subsection, we detail the construction of a custom pipeline for images that

is made up of of Gaussian blur, Principle Component Analysis, and Random Forest

Classifier steps. The first step is to define the custom transformer function imple-

menting the Gaussian blur, using a utility from OpenCV:

import numpy as np

from cv2 import GaussianBlur

def gaussian_blur_fnc(X,kernel_size ,stddev ,matrix_type=float):
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"""

Applies Gaussian blur to the given data

Args:

X: data to blur

kernel_size: Gaussian kernel size

stddev: Gaussian kernel standard deviation

"""

output = np.zeros(X.shape)

X = X.astype(matrix_type)

for i in range(X.shape [0]):

output[i,]= np.reshape(GaussianBlur(X[i,],( kernel_size ,\

kernel_size),sigmaX=stddev ,sigmaY=stddev) ,(X.shape [1]))

return output

In the last step, we define the set_my_pipeline function.

1. Specify desired model variables (sklearn Transformers or Estimators)

In this pipeline, we use scikit-learn’s PCA and RandomForestClassifer classes for

steps 2 and 3 of our pipeline. For step 1, we use our custom gaussian_blur_fnc

defined above. To set a model variable using that function, we use the Function-

Transformer wrapper, which simply takes in a function and returns a wrapper

implementing scikit-learn’s required fit and transform methods.

2. Put the model variables in a list of (name, step variable) tuples and

feed that to the Pipeline() constructor.

3. Set pipeline hyperparameters.

To do this, we simply form a list of tuples. The first item in the tuple is

the name you assigned to the pipeline step, the second is the name of the

parameter to be set (the name taken as an argument to your custom function

or scikit-learn estimator), and the third is the name given to the parameter in

the hyperparam_ranges argument specified above.
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The resulting set_my_pipeline function:

from sklearn.decomposition import PCA

from sklearn.ensemble import RandomForestClassifier

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import FunctionTransformer

def set_my_pipeline(hyperparam_dict):

"""

Constructs pipeline variables , sets params according to ←˒

parameter

dictionary hyperparam_dict , and returns sklearn Pipeline object

The format for steps_params is [(name of step ,name of param in

hyperparam_ranges , name of param as argument to step)]

Args:

hyperparam_dict: dictionary of hyperparameters to set

Returns

pipeline: scikit -learn Pipeline object with

hyperparameters set

"""

# Step 1: Define pipeline by specifying model variables

gaussian_blur = FunctionTransformer(func=gaussian_blur_fnc ,\

validate=False) # custom pipeline component

pca = PCA()

rf = RandomForestClassifier ()

# Step 2: Construct Pipeline object

pipeline = Pipeline ([(’gaussianBlur ’,gaussian_blur),\

(’PCA’,pca),(’RF’,rf)])

# Step 3: Set pipeline hyperparameters

steps_params_list = [("gaussianBlur","kernel_size","kernel_size←˒

"),\
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("gaussianBlur","stddev","stddev") ,("PCA" ,\

"n_components","pca_dim"),("RF","←˒

n_estimators"\

,"n_estimators")]

pipeline = set_hyperparams_dm(pipeline ,hyperparam_dict ,\

steps_params_list)

return pipeline

5.5 Conditional Pipeline Evaluation

One potential method for achieving appreciable speed improvements is to condition-

ally evaluate pipeline steps according to which steps’ hyperparameters have changed.

For example, consider a three-step pipeline with transform steps 𝐴 and 𝐵 followed by

estimator 𝐶, where each step has one hyperparameter. If only 𝐶’s hyperparameter

changes between two hyperparameter set evaluations, then we do not need to recom-

pute steps 𝐴 and 𝐵 of the pipeline. A possible system would then store the outputs

of the intermediate steps for each hyperparameter set and use those precomputed

outputs whenever another hyperparameter set overlaps with previously computed

steps. However, the overhead for this storage process may outweigh the potential effi-

ciency gains. This method is not currently implemented in Deep Mining but could be

explored in the future. Currently, users can precompute pipeline steps by simply pro-

viding data to Deep Mining after applying transformations whose hyperparameters

they do not want to tune.

5.6 Enabling Raw Data

A significant barrier to the implementation of data science pipelines is cleaning and

formatting the original data. Machine learning methods typically require data in a

matrix format, with 𝑋 data and 𝑌 labels provided either as two matrices or in a
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cross-validation split. In practice, however, data rarely conforms to this format, and

preprocessing and feature engineering methods frequently take raw image, text, or

database files as inputs rather than matrices. The Deep Mining system’s emphasis

on scalability allows for the tuning of these costly methods, and enabling realistic

pipelines also requires allowing a natural data format.

The DARPA initiative has proposed a D3M data format for specifying datasets

that contain both matrix and raw data, including various text, image, and audio

formats. The Deep Mining system includes a set of utilities for parsing datasets

in this format for use by pipelines in Deep Mining. With this specific structure

and parsing capability, Deep Mining enables an alternative data format for users in

addition to the typical matrix format.

5.7 Contribution Framework

The Deep Mining project includes elements from systems engineering, statistics, and

specific data science domains. Successful future development of this system requires

a structured contribution framework allowing for input from experts in each of these

groups.

The most pressing group to integrate is domain experts, as their inclusion of cus-

tom feature extraction functions and pipelines for a variety of datasets can be helpful

for other users. The pipeline specification framework provided by Deep Mining makes

it significantly easier to share data science pipeline code, as the consistent interface

allows for simple interchanging of both whole pipelines and specific steps. In order

to provide new pipelines and custom functions, domain experts simply place their

code in the examples/pipelines folder of Deep Mining, which is separated into appro-

priate custom function domains such as images and text to allow for an organized

contributing process.

To improve on the novel copula process method of Bayesian optimization, con-

tributors can simply modify the code provided in the gcp folder, which contains the

entire Gaussian Copula Process model. Detailed instructions for contributors can be
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found in the documentation.

By allowing experts to share constructed data science pipelines, Deep Mining

also enables the comparison of these pipelines for different datasets. Future work

will involve creating a structured format for saving model performances on various

datasets. Future work on this contribution framework also includes the incorporation

of a code testing framework, clearer separation of systems code for the implementation

of distributed processing, and a structured code review process.
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Chapter 6

Deep Mining: Sampling-based

estimation

Real-world data science applications can involve data points numbering in the mil-

lions, introducing issues of computational tractability and memory. In the face recog-

nition example from Chapter 3, the amount of data involved can grow quite large,

as each individual data point occupies significant disk space and computation time.

Because the methods we tune in our system include operations on raw image files that

can occupy entire megabytes of space, the overall data science pipeline must operate

on gigabytes of data and takes significant time to execute. Taking these difficulties

into account, multiple questions arise:

∙ How can a data scientist accelerate the evaluation of a single pipeline?:

Hyperparameter tuning involves iteratively evaluating many candidate hyperpa-

rameter sets. that span the entire pipeline, which must be trained and validated

in order to produce a performance score. Because performing calculations or

transformations that involve earlier stages of pipeline is computationally expen-

sive, computing on the entire data several times during tuning is impractical

even in a parallelized system. In this chapter, we investigate whether this

computational time could be mitigated by executing the tuning process on a

subsample. By sampling only part of the data, data scientists can use the same
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methods in less time.

– How can sampling be done in an intelligent way?: When made

using only part of the data, calculations inevitably become less accurate.

How can the data scientist maintain the precision of estimates?

– How can uncertainty be quantified?: To be able to use these estimates

in production, data scientists must first quantify their uncertainty. How

can bounds be established on the estimate’s variation when operating on

the entire dataset?

In this chapter, we will describe approaches to answer these questions by introduc-

ing sampling and cross validation techniques, discussing the Bag of Little Bootstraps

sampling method, and detailing the application of this technique to the tuning of

data science pipelines.

6.1 Sampling Applications

When discussing the use of sampling in data science, two major applications arise:

∙ Sampling to estimate a statistic: This approach involves using a sample

to estimate a statistic about a given dataset as precisely as possible. Examples

of this process include calculating the (multidimensional) mean and variance of

elements in a dataset.

∙ Sampling to compare models: When comparing two modeling techniques,

models can be trained on multiple (overlapping or disjoint) subsamples to esti-

mate and compare their accuracy. When choosing between models for a partic-

ular dataset, the goal is to pick the model with the best rank among possible

models rather than calculate the value of the statistic itself (i.e., scoring or loss

function).

In this thesis, we will focus on how the second approach can be applied to hyper-

parameter tuning.
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Cross-validation is often used to choose between models and falls into the second

category. 𝑘-fold cross-validation involves splitting the training set into 𝑘 smaller sets

by sampling without replacement and iteratively training on 𝑘 − 1 of the training

data folds and validating on the remaining data fold. The resulting 𝑘 scoring met-

rics can then be averaged to choose the best model or used to construct confidence

intervals. This method serves two purposes: 1. It allows data scientists to compare

models using the averaged metric, and 2. It provides an estimate of uncertainty for

the model. When large amounts of data are involved, however, cross-validation is

extremely expensive, requiring an approximate factor of 𝑘 more computation than

simply training with a single split.

Bootstrap aggregation, or bootstrapping, is a method used to improve performance

estimates in machine learning algorithms [32]. In this algorithm, new training sets

are generated from the original dataset (by sampling with replacement), and each of

these training sets has an expected size of around 63% of the original data. After

training the model using each of these training sets, the predictions on each of these

sets can be combined to give more stable and accurate predictions.

In our system, we propose using Bag of Little Bootstraps (BLB), a subsampling

method that allows for the evaluation of an arbitrary statistic of the data in superior

asymptotic time with the same statistical guarantees as the bootstrap. BLB was

originally developed for the first use case: sampling to estimate a statistic over data.

In our case, we hope to use it to tune hyperparameters in significantly reduced time.

By executing the computation in this algorithm in parallel using Apache Spark, the

theoretical speed gains become even greater, significantly improving the computation

time of hyperparameter optimization and making possible the automatic tuning of

complex pipelines on large datasets.

6.2 Bag of Little Bootstraps

The Bag of Little Bootstraps, proposed in [24], enables the calculation of statistics

on data with the same statistical guarantees as the traditional bootstrap, allowing
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for scalable assessments of the quality of estimators. Bootstrap-based quantities are

typically computed by applying a given estimator repeatedly to resamples of the

original dataset. Because the sizes of these resamples are of the same order as the

original data (typically around 63% of the data points), the bootstrap cannot be

applied to large datasets in practice. The BLB method, however, alleviates this

problem by introducing an additional level of subsampling, constructing “bags” within

which bootstraps are created.

More specifically, consider a dataset with 𝑛 elements. In the BLB algorithm, the

data is first subsampled into a “bag” of size 𝑏 ∈ [𝑛1/2,𝑛] by sampling the original

data without replacement. Within each of these bags, a multinomial sample of size

𝑛 is drawn to give a set of indices. Essentially, we draw with replacement 𝑛 data

points from our bag of size 𝑏. Then, the estimator in question is computed on this

sample of the data for each of the multinomial samples within each of the bags. For

each bag, the value of the estimator is the average of the estimates on each of the

bootstraps. Then, the overall estimator value given by the algorithm is the average

of the estimator values for each bag.

Algorithm 2: Bag of Little Bootstraps
Input : Data: 𝑛 (m-dimensional) data points 𝑋1...𝑛 = {𝑥1

1...𝑚 . . . 𝑥𝑛
1...𝑚};

𝑏: Bag size; 𝑠 Number of bags;
𝑟: Number of Multinomial samples in each bag
𝐸: Estimator in question; 𝑦: statistic of interest.

Output: Estimate of 𝑦
1: for 𝑗 → 1 to 𝑠 do
2: Randomly sample 𝑏 data points without replacement forming a bag

𝑋𝑗
1...𝑏 ∼ random(𝑋1...𝑛)

3: for 𝑘 → 1 to 𝑟 do
4: Sample the counts (𝑛1,...,𝑛𝑏) ∼ Multinomial(𝑛,1𝑏/𝑏)

Estimate 𝑦 on the bootstrap sample using 𝑋𝑗
1...𝑏 and the counts as weights

𝑦𝑘 = 𝐸(𝑋𝑗
1...𝑏, 𝑛1,...,𝑛𝑏)

5: end for
𝑦𝑗 = 𝑟−1

∑︀𝑟
𝑘=1 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑘

6: end for
return 𝑦 = 𝑠−1

∑︀𝑠
𝑗=1 𝑦𝑗

The computational benefit of this algorithm is only realized because each multino-
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mial sample consists of only 𝑏 distinct points, meaning we are essentially operating on

𝑏 data points. The computational complexity of the estimator, then, scales only with

𝑏 rather than 𝑛 for both time and disk space used. Because many estimators can work

directly with a weighted data representation, in this case this computational benefit

is easily realized, as each of the 𝑏 data points has a count of occurrences such that the

counts across all data points sum to 𝑛. As an example, consider a (multidimensional)

mean as a statistic to calculate on data. Implementations of mean in Python can call

on the algorithm to take a sample weight as input, allowing duplicates of data to be

incorporated with asymptotic complexity that scales with the number of unique data

points by simply passing an array specifying the number of times each data point

appears.

The benefits from this reduction in data are substantial, as for an original dataset

with 𝑛 = 500, 000 data points and a conventional bag size of 𝑏 = 𝑛0.6, estimators

can be computed by operating on only 2,627 data points each. While we will not

go into the derivation of the theoretical guarantees here, the statistical properties

of asymptotic consistency and higher-order correctness are identical to those of the

bootstrap, allowing for the computation of a variety of functions. The BLB method

is also quite amenable to parallelization, as each resampled bag can be computed in

parallel with no modification to the original algorithm.

6.3 Application to Tuning Data Science Pipelines

Our system uses an algorithm based on the Bag of Little Bootstraps to construct

samples for training and validating data science pipelines. The high-level idea is to

calculate the user-defined scoring function on the multinomial samples from the BLB

algorithm, then average these scores within and then across bags. In applying BLB

to data science pipelines, multiple questions arise:

∙ How to construct samples from raw data?: The incorporation of raw

data types, such as images and relational data, poses questions for sampling

algorithms typically applied to matrices, and these processes must be adapted
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for practical uses.

∙ How to design a cross-validation split within BLB?: The original BLB

algorithm applies to statistics calculated on the whole dataset – how can this

algorithm be adapted for machine learning algorithms that operate on training

and test data?

∙ How to use BLB with varied pipeline methods?: Several methods in the

initial stages of the pipeline may not have equivalent functions that can operate

on weighted samples of data, and the adaption of these techniques must be

considered when using BLB in data science pipelines.

In this section, we will discuss each of these questions, detailing the methods

necessary to apply BLB to practical data science problems.

6.3.1 Sampling for Raw Data Types

In constructing data science pipelines, the goal is to build a supervised model, and

sampling implies choosing a subset of training examples.

When organized in a matrix format, data is typically arranged so that rows corre-

spond to distinct data points and columns correspond to the attributes of those data

points. Taking a random sample in this framework is simple: A random vector can be

generated, with each element in the range of the total number of rows (data points),

and rows can be selected with or without replacement if their row index appears in

the random vector.

Image data can be sampled in much the same way, as the color or greyscale pixel

values for each image can simply be flattened so that each row again corresponds

to a data point. To enable feature transformation methods that use the rectangular

structure of images, three-dimensional arrays can be used so that each “row” now

corresponds to a two-dimensional vector. Again, sampling is simple, as rows can be

selected by generating indices at random.

Text data can be similarly sampled, as the text(s) in question for each data point
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can simply be placed as elements of each row. Sampling can then be performed in

the same way as before.

Relational datasets introduce complications in sampling, as multiple tables (ma-

trices) can exist for a single dataset. In this case, sampling can be done in the 𝑙𝑎𝑏𝑒𝑙𝑠

table, which has the list of entity-instances and the associated table. While we load

and maintain the entire data in memory in this method, computations are done using

only a subset of the entity-instances.

Other considerations: Sampling can either be implemented at the file level or

after data has already been imported into Python objects. Both approaches have

their merits, as sampling at the file level (e.g., by selecting only specific file names

from a list of all files in the directory) can reduce the computational burden by loading

only raw files used. However, this approach requires a different sampler for different

data formats. For example, text datasets can be stored as individual files for each

data point, as groups of data points, or in a single file for all data points, and each of

these storage options would require a different sampler. For this reason, Deep Mining

currently uses a single sampler at the matrix level, with custom samplers implemented

for relational datasets.

6.3.2 Cross-validation in BLB

Armed with a sampling method that is valid across datasets, we incorporate cross-

validation in BLB using a train-validation split approach based on that proposed in

[34]. In this approach, training and validation bags are both constructed: For the

parameter 𝑠 in the original BLB, 2 · 𝑠 bags are created. Then, multinomial samples

are taken as before within the training bag, and the pipeline in question is trained on

each of these weighted, size 𝑏 bootstraps. The weights drawn from the Multinomial

distribution bias the training of the pipeline. These trained models are then scored on

the validation bag, and the scores from the validation bags are averaged to compute

a final estimate. The detailed process can be found in Algorithm 3.
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Algorithm 3: Bag of Little Bootstraps for Data Science Pipelines
Input : Data: 𝑛 (m-dimensional) data points 𝑋1...𝑛 = {𝑥1

1...𝑚 . . . 𝑥𝑛
1...𝑚};

𝑏: Bag size; 𝑠 Number of bags;
𝑟: Number of Multinomial samples in each bag
𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒: pipeline in question; 𝑦: statistic of interest.

Output: Estimate of 𝑦, 𝑦
1: for 𝑗 → 1 to 𝑠 do
2: Randomly sample 𝑏 data points without replacement to form a training bag

𝑋
𝑗(𝑡)
1...𝑏 ∼ random(𝑋1...𝑛)

3: Randomly sample 𝑏 data points without replacement to form a validation bag
𝑋

𝑗(𝑣)
1...𝑏 ∼ random(𝑋1...𝑛)

4: for 𝑘 → 1 to 𝑟 do
5: Sample (𝑛1,...,𝑛𝑏) ∼ Multinomial(𝑛,1𝑏/𝑏)
6: pipeline = pipeline.fit(𝑋𝑗(𝑡)

1...𝑏, 𝑛1,...,𝑛𝑏)
7: 𝑦𝑘 = pipeline.score(𝑋

𝑗(𝑣)
1...𝑏 )

8: end for
𝑦𝑗 = 𝑟−1

∑︀𝑟
𝑘=1 𝑦𝑘

9: end for
return 𝑦 = 𝑠−1

∑︀𝑠
𝑗=1 𝑦𝑗

6.3.3 Application of BLB to Varied Pipeline Methods

The asymptotic benefits of BLB, however, can only be realized using pipeline methods

that can operate on the weighted forms of data. As discussed earlier, data science

pipelines use two major types of pipeline steps: 1) transformer methods, examples

of which include preprocessing and feature extraction methods, and 2) estimator

methods, such as classifiers and regressors. Pipelines typically consist of a series of

transformer methods followed by a single Estimator method that produces a score or

predictions. Transformer methods simply return an altered version of the original 𝑋

data and 𝑌 labels.

When discussing the application of BLB to data science pipelines, two types of

transformers emerge:

∙ Independent Transformers

These methods operate on each data point independently and do not require the

whole dataset in order to function. An example of this method is the histogram

of oriented gradients (HOG), which operates on each image in isolation.
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∙ Joint Transformers

These methods require the whole dataset to function, as their output depends

on input from the whole dataset. Examples include Bag of Words, which if

outputting a vector of length number of words in the vocabulary needs knowl-

edge of the vocabulary used by the entire dataset. Another example is Principle

Component Analysis (PCA), whose learned outputs vary with the number of

occurrences of specific data points.

Consider a pipeline that uses both joint and independent transformer methods,

with an eventual estimator capable of using weights from the multinomial sample. In

contrast to the previously discussed mean function, multiple methods are involved,

and not all of the methods use the sample weights. Independent transformers can

be immediately applied to data bags from BLB: Only 𝑏 unique data points exist,

and the weights drawn from the multinomial sample can simply be passed along to

subsequent Transformers or Estimators who use them. Joint Transformers sometimes

can work with unweighted bag data – in Bag of Words, the algorithm needs only to

know the scope of the vocabulary, and repeating words can not affect the output,

depending on the output format. However, some joint transformers such as PCA

require weighted versions of the data. To accommodate these transformer methods,

users must either implement weighted versions of their particular algorithm, or use the

wrapper provided by Deep Mining, which gives duplicated data to the transformer

method as input. Implementing weighted versions of the algorithm in question is

much faster in practice, and examples can be found in packages such as scikit-learn.

6.4 Implementation

The BLB algorithm for machine learning is quite parallelizable, as bags can be com-

puted on in parallel. Deep Mining uses Apache Spark on EC2 clusters as well as

the pathos multiprocessing method to parallelize this computation. As explained in

detail in chapter 7, Deep Mining uses a map-reduce structure in which it computes
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estimator scores for a given multinomial sample and bag, then aggregates these scores

by averaging across all multinomial samples and bags.

To run the BLB algorithm in Deep Mining, the user only needs to specify the

value of the BLB hyperparameters: the size of the bags 𝑏, the number of sampled

bags 𝑠, and the number of bootstraps 𝑟. As discussed in chapter 9, we have found

𝑏 = 𝑛0.6, 𝑠 = 8, and 𝑟 = 20 to be sufficient for many data science pipelines.

6.5 Extensions

The map-reduce implementation of the BLB algorithm in our system also allows

for different reduction functions, giving the flexibility to calculate other statistical

quantities about the estimator scores in question. For example, confidence intervals

and estimator variances can be constructed by using the empirical multinomial sample

scores [18].

6.5.1 Reducing Complexity of Data Science pipelines

The asymptotic computational benefits that come from using this BLB train-validation

split are considerable, as machine learning algorithms now scale with 𝑏 rather than

𝑛. For example, Support Vector Machine methods now have asymptotic complex-

ity 𝑂(𝑏2) rather than 𝑂(𝑛2), a considerable improvement when 𝑏 ∈ [𝑛0.5,𝑛]. This

complexity is achieved through machine learning algorithms that can use data given

as weighted samples. Implementations with this capability can be easily found in

open-source libraries like scikit-learn.

Setting the BLB hyperparameters is a major consideration in this algorithm, as

changing the number of bags 𝑠 and the number of multinomial samples in each bag 𝑟

can dramatically change the running time. In Algorithm 3, we train the estimator 𝑠 ·𝑟

times and test the estimator 𝑠 times. If the original algorithm has time complexity

𝑂(𝑛) for training or testing on 𝑛 data points, the rough complexity of this process is 2·

𝑠·𝑟 ·𝑏 for bags of size 𝑏. Because of this dependence, setting the BLB hyperparameters

can significantly change the runtime of this algorithm. We make these hyperparameter
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considerations empirically, as shown in Chapter 9. The theoretical guarantees that

come with this method roughly follow from those of traditional BLB, and we show

the effectiveness of this algorithm through an empirical analysis.
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Chapter 7

Deep Mining: Parallel computation

A major shortcoming of existing hyperparameter tuning systems is their inability

to scale to work with large datasets and full pipelines that incorporate costly fea-

ture extraction methods. By failing to provide users with software infrastructure for

specifying and efficiently evaluating pipelines, these tools require data scientists to

fill in the gaps and create the infrastructure necessary to tune real-world pipelines

and datasets. Sampling-based methods like BLB, which must be implemented in a

distributed system, theoretically improve evaluation time. In this section, we will

make a distinction between parallelization methods, which are ways to conceptually

organize the parallel computation, and parallelization frameworks, which are specific

software tools used to compute in parallel (e.g., Apache Spark).

7.1 Parallelization Methods

Deep Mining implements two methods of parallelization:

∙ Bag of Little Bootstraps algorithm for machine learning: The varia-

tion of the Bag of Little Bootstraps algorithm used in Deep Mining can be

found in the Chapter 6. The BLB algorithm provides two possible levels of

parallelization.

The training and validation within each pair of bags can be done completely in
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parallel. The first level of parallelization executes computation on each bag on

a separate node. Within each training bag, the computation on the bootstraps

samples is also independent, so training using these samples can also be done

entirely in parallel.

Within Deep Mining, parallelization across each bag pair is currently imple-

mented in the frameworks used, and future work may include parallelization

within the training bags to further speed the process. For both levels of par-

allelization, the algorithm cannot continue until all jobs are completed. The

parallelization framework, then, must implement a synchronous process.

∙ Hyperparameter sets in parallel: In addition to the Bag of Little Bootstraps

sampling method, Deep Mining provides an alternative method of parallelization

in which different hyperparameter sets are evaluated in parallel. In this process,

the acquisition function is evaluated for a grid of candidates as before, and,

instead of choosing only the single best candidate, the best 𝑘 candidates are

evaluated on the full pipeline.

When evaluating hyperparameter sets in parallel, the method of parallelization

is fairly clear: each set of hyperparameters is evaluated by a distinct worker

process. This method is currently implemented in Deep Mining. However,

the hyperparameter optimization algorithm is sequential, so the computations

could also be performed asynchronously, with worker processes evaluating new

hyperparameter sets in immediate succession.

7.2 Parallelization Frameworks

When comparing distributed processing engines, Hadoop MapReduce and Apache

Spark [47] commonly emerge as contenders. Hadoop MapReduce, the historical stan-

dard, integrates well with the remainder of the Hadoop ecosystem, including Hadoop

YARN, HDFS, and Hadoop Common. Apache Spark provides a faster, more gen-

eral engine for data processing, utilizing in-memory processing that makes it signifi-
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cantly more efficient than Hadoop MapReduce. Spark can also run up to ten times

faster than MapReduce on disk and incorporates well with existing Hadoop tools

like HDFS and Yarn. Users frequently choose Spark over Hadoop MapReduce for its

more friendly API (which includes interfaces to Java and Python), general processing

framework, and improved speed.

Dask [10] provides an alternative to Apache Spark that encompasses a subset of

Spark’s more broadly inclusive framework. It is a lightweight alternative to Spark,

with fewer features, but includes a simpler API and easier integration with Python

libraries such as Numpy and Pandas. Python also provides a multiprocessing module

that allows for parallel threads and processes to be run on a single machine and

provides a lighter alternative to these more general systems.

7.3 Current Implementation

We began our implementation of parallel processing in Deep Mining by using Apache

Spark both locally and on EC2 clusters. Deep Mining now runs on Spark clusters

with multiple parallelization methods, provides instructions to set up Apache Spark

clusters on EC2 machines, and runs without additional setup on one machine. This

implementation came with difficulties, which are outlined in the attached Appendix

A.

We explored the Python multiprocessing module for use in parallel computation.

We used the pathos package [30] for its support of parallelizing more complicated

functions by using dill, an extension of Python’s pickle module for serializing Python

objects. Because it has a smaller computational overhead than Spark, pathos enabled

faster parallelization on local machines for the pipelines in my experiments.

When the pathos multiprocessing module is used, a new Python process is created

for each hyperparameter set. With Apache Spark, new tasks in the given Spark job

are created and sent to a Spark executor. With BLB, a user-specified number of tasks

are specified: When using the pathos multiprocessing module, this number specifies

the number of Python processes spawned. In the Apache Spark framework, an array
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corresponding to the indices in the original data for each bag is split into as many

partitions as the user specifies.

7.4 Future Work

Because of its broader support for Python, lighter-weight architecture, and tighter

integration with numeric libraries, Dask could be an effective additional parallelization

framework for Deep Mining. We plan to experiment with its integration in future

work.

In addition to providing the necessary software infrastructure, an additional com-

ponent of Deep Mining could be a hardware system on which users can run their

pipelines. This hardware infrastructure could include specialized EC2 machines and

clusters pre-configured for use by data scientists.

In any distributed computation system, application-specific tuning can signifi-

cantly increase computational performance. Fine-tuning of Apache Spark applica-

tions by altering configuration values, incorporating file systems such as HDFS, and

altering the level of parallelism can significantly speed hyperparameter optimization

in the future. Just-in-time compilers such as SEJITS [7, 22] can also speed com-

putation by porting high-level Python to lower-level languages such as C, and these

systems could be applicable to Deep Mining.
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Chapter 8

Interacting with Deep Mining

An important goal of the Deep Mining system is to provide a simple, intuitive API

design that allows for effective hyperparameter tuning. In addition to demonstrat-

ing the efficacy of theoretical improvements, we aim to provide a usable system that

addresses the shortcomings of existing hyperparameter tuners. In this section, we de-

scribe the end-to-end data science pipeline tuning framework of Deep Mining through

concrete examples, along with the contribution structure available for a variety of do-

main experts.

– The source code for Deep Mining can be found here:

https://github.com/HDI-Project/DeepMining.

– The documentation for the software could be found here:

http://hdi-project.github.io/DeepMining/

8.1 End-to-end System

Using the Deep Mining system consists of three steps: 1) Load the desired data, 2)

Define a pipeline, either by choosing from the existing library or defining custom

functions and hyperparameter ranges, and 3) Run the hyperparameter optimization.
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8.1.1 Data Loading

A major shortcoming of existing tuning systems is their inflexibility in accepting

different data types. Typically, these tools require data in a matrix format, either

as a nested Python list or a NumPy array or matrix. This constraint often requires

the user to convert their existing data, an error-prone and often lengthy process. To

overcome this problem, Deep Mining provides a parser for data in raw file formats such

as JPEG or text using the D3M structure 1, enabling users to tune hyperparameters

simply by defining auxiliary JSON files describing their data and leaving their data in

a native file format. In many cases, this structure reduces user effort and frustration

by providing a faster and more reliable method of data importing. The matrix format

of data, however, may be preferable in a variety of applications, so Deep Mining also

allows for this familiar data input style.

Users load data with the d3m_load_data function using arguments as necessary.

Full documentation exists for this and other functions, but notable arguments include

data_directory, a string denoting the location of the data files, 𝑋 and 𝑌 for data in

matrix format, and a percentage denoting the (random) percentage of the total data

to use as a sample. Table 8.1 lists the arguments for this function.

1D3M stands for Data Driven Discovery of Models. Developed by MIT Lincoln Labs, this format
is a standardized data structure to represent complex datasets.
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Table 8.1: Arguments for d3m_load_data function.
Argument Data type Conditional on? Required? Purpose

data_directory String Must be specified if X or Y is
None

No Location of D3M-formatted data

X Numpy array Must be specified if
data_directory is None

No Data points for train-validation split

Y Numpy array Must be specified if
data_directory is None

No Data labels for train-validation split

sample_size_pct float None No Percentage of data to use in train and validation sets
combined. In range (0.0,1.0]. Lower values can be used
either for testing or for running large datasets quickly.

validation_size_pct float None No Percentage of sampled data to use in validation set. In
range (0.0,1.0). For example, if sample_size_pct = 0.5
and validation_size_pct = 0.5, then 25% of the data
will be sampled at random to be used in the validation
set (and 25% for the train set)
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8.1.2 Defining A Pipeline

Deep Mining provides pipeline implementations with defined hyperparameter ranges

for a variety of datasets. Current pipelines include a Convolutional Neural Network

image pipeline, a traditional image pipeline using HOG features, a text pipeline using

Bag of Words and term frequency-inverse document frequency features, and a random

forest classifier pipeline for general use. Using these pipelines is simple, requiring the

user to specify a single argument, pipeline_filepath, in the DeepMine function.

Instructions for defining a pipeline in Deep Mining can be found in Section 5.4.

8.1.3 Run Hyperparameter Optimization

Once a pipeline has been defined, users execute the hyperparameter optimization

process by calling the DeepMine function with appropriate arguments. Arguments

of DeepMine include the parallelization system and method, BLB hyperparameters,

and total number of iterations. DeepMine either returns a pipeline with the highest

scoring hyperparameters, or a tuple of best pipeline object and a Pandas DataFrame

of hyperparameters and their associated performances, depending on the value of the

boolean argument store_performances.

After setting the hyperparameters using the parameter dictionary given by a

Bayesian hyperparameter optimization process, the pipeline is then fit and validated

using the provided cross-validation split, outputting the score that will be used in

the optimization. The pipeline executor chooses between parallel and non-parallel

execution methods to provide scores to the Bayesian optimizer, which provides new

hyperparameter sets to test in a sequential process until the final pipeline is returned

to the user.
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Table 8.2: Arguments for DeepMine function. R= Required?, D = Default
Argument Data type Conditional on? R? D Purpose

data dataObject None Yes - dataObject instance loaded from d3m_load_data. Must
contain X_train, y_train, X_val, and y_val attributes.

hyperparam_ranges dict Must be specified if
pipeline_filepath is not

No None Dictionary specifying hyperparameter names, ranges, and
types.

set_pipeline function Must be specified if
pipeline_filepath is not

No None set_pipeline function that returns a scikit-learn Pipeline
object set using a hyperparam_dict argument.

pipeline_filepath string Must be specified if
hyperparam_ranges and
set_pipeline are not both
specified

No None Filepath of Python file containing pipeline functions.
Filepath starts from the DeepMining directory (e.g.,
examples.pipelines.traditional_image). Must be
separated by “.”, not “ ’́ or “/”.

parallelized int None No 0 0: no parallelization; 1: parallelization using pathos
multiprocessing module; 2: parallelization using Apache
Spark

use_BLB boolean If parallelized != 0, then this
is active

No False If True, use Bag of Little Bootstraps subsampling method
for training and testing.

num_total_iter int None No 4 Number of SmartSearch iterations to run
num_parallel_sets int Active only if

parallelized != 0 and
use_BLB == False

No 3 Number of hyperparameter sets to evaluate in parallel in
the non-BLB parallelization method

SmartSearch
_param_dict

dict None No None Dictionary of parameters to pass to SmartSearch
initializer. Keys are argument names, and values are
argument values.

blb_param_dict dict Active only if
parallelized != 0 and
use_BLB == True

No None Dictionary with keys corresponding to BLB
hyperparameters: gamma (exponent in size of bag), s
(number of bags), r (number of Monte Carlo iterations),
and partitions (number of partitions for RDD in Apache
Spark). Values in the dictionary correspond to the values
of these hyperparameters and are read in blb_utils.py
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Table 8.2 continued.
Argument Data type Conditional on? R? D Purpose

my_spark_directory string Active only if
parallelized == 2 (and then
required)

No None Local location of spark installation directory. Required to
run Apache Spark method of parallelization.

spark_cluster_locationint or string Active only if
parallelized == 2

No None Location of spark cluster: either 0 (local mode), 1 (EC2
cluster), or 2 (custom Spark URL as a string). In EC2
mode, the URL is found automatically in the deep_mine
function.

store_performances boolean None No False If True, return Pandas dataframe with all hyperparameter
sets and their associated scores.

score_fnc string or
sklearn scoring
object

None No None String or scikit-learn scoring object denoting the method
of scoring used. Examples can be found at
http://scikit-learn.org/
stable/modules/model_evaluation.html
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8.1.4 Built-in Pipeline Example

Running existing pipelines in Deep Mining is simple. First, we load the data, setting

the optional sample_size_pct so that we load a random 10% portion of the data:

1 image_data_directory = ’path/to/data’

2 image_data = d3m_load_data(data_directory = image_data_directory ,

3 sample_size_pct =0.1 # Percentage of data←˒

uses as subsample

4 )

Then, we run DeepMine, in this case using the traditional image pipeline, located

in examples/pipelines/traditional_image.py:

1 image_pipeline = DeepMine(

2 data = image_data ,

3 pipeline_filepath = "examples.pipelines.traditional_image",

4 )

When our hyperparameter optimization has finished, we have a scikit-learn Pipeline

object in the image_pipeline variable, on which we can call predict or other meth-

ods as desired.

8.1.5 Custom Pipeline Example

Running the custom pipeline from section 5.4.1 requires two steps. First, define the

desired hyperparameters and ranges:

1 hyperparam_ranges = {

2 ’kernel_size ’ : [’cat’ ,[3,5]],

3 ’stddev ’ : [’int’ ,[0,4]],

4 ’pca_dim ’ : [’int’ ,[50,300]],

5 ’n_estimators ’: [’int’ ,[2,10]]}
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and the set_my_pipeline function from section 5.4.1:

from sklearn.decomposition import PCA

from sklearn.ensemble import RandomForestClassifier

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import FunctionTransformer

def set_my_pipeline(hyperparam_dict):

"""

Constructs pipeline variables , sets params according to ←˒

parameter

dictionary hyperparam_dict , and returns sklearn Pipeline object

The format for steps_params is [(name of step ,name of param in

hyperparam_ranges , name of param as argument to step)]

Args:

hyperparam_dict: dictionary of hyperparameters to set

Returns

pipeline: scikit -learn Pipeline object with

hyperparameters set

"""

# Step 1: Define pipeline by specifying model variables

gaussian_blur = FunctionTransformer(func=gaussian_blur_fnc ,\

validate=False) # custom pipeline component

pca = PCA()

rf = RandomForestClassifier ()

# Step 2: Construct Pipeline object

pipeline = Pipeline ([(’gaussianBlur ’,gaussian_blur),\

(’PCA’,pca),(’RF’,rf)])

# Step 3: Set pipeline hyperparameters

steps_params_list = [("gaussianBlur","kernel_size","kernel_size←˒

"),\
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("gaussianBlur","stddev","stddev") ,("PCA" ,\

"n_components","pca_dim"),("RF","←˒

n_estimators"\

,"n_estimators")]

pipeline = set_hyperparams_dm(pipeline ,hyperparam_dict ,\

steps_params_list)

return pipeline

Then, call the DeepMine function using the image_data object from before:

1 custom_pipeline = DeepMine(

2 data = image_data ,

3 set_pipeline = set_my_pipeline ,

4 hyperparam_ranges = hyperparam_ranges

5 )
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Chapter 9

Experimental Results

In our experimentation with Deep Mining, we aimed to answer the question: Is

Bayesian hyperparameter optimization using BLB an effective way to search the hy-

perparameter space? If this optimization is effective, then the asymptotic complexity

of hyperparameter optimization will be dramatically improved, giving a theoretical

result that can accelerate the tuning of data science pipelines. If optimization with

the estimator scores that result from using BLB on the pipeline is effective, then we

will see improvement in the pipeline performance that is roughly comparable to the

non-BLB approach, where we calculate the pipeline scores using all of the data.

9.1 Datasets

For this question, we experimented with image and text pipelines.

9.1.1 Handwritten Digits

We first considered the famous “handwritten digits recognition problem,” using the

MNIST dataset. In this dataset, training data consists of images depicting handwrit-

ten digits from 0 to 9. The task of the classifier is to predict the digit label from each

greyscale image.
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9.1.2 Sentiment Analysis

The second problem we considered involves using the text of movie reviews to pre-

dict whether a particular review is “positive” or “negative”. The dataset used is from

Kaggle’s Sentiment Analysis competition Bag of Words Meets Bags of Popcorn. The

reviews are from IMDB and the labels were attributed based on the rating accom-

panying the IMDB review: “negative” for a rating lower than 5, and “positive” for a

rating greater than or equal to 5 (on a one-to-ten scale).

9.2 Pipelines

In our experiments, we used three pipelines. For the image dataset, we used a con-

volutional neural network pipeline as well as a more traditional pipeline, with the

conventional HOG feature extraction method. For the text, we used a traditional

pipeline, with conventional feature extraction and processing methods.

Traditional image pipeline

For images, we used a pipeline consisting of the scikit-image [43] implementation of

Histogram of Oriented Gradients (HOG) and scikit-learn’s random forest classifier.

Convolutional neural network image pipeline

For images, we also considered a convolutional neural network (CNN), as CNNs have

demonstrated state-of-the-art results on image datasets, and tuning of their architec-

ture hyperparameters can significantly affect their performance.

Traditional text pipeline

For the sentiment analysis problem, we first considered a conventional pipeline using

bag of n-grams transformations, term frequency-inverse document frequency features,

and a Naive Bayes classifier.
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9.3 Methodology

The following description includes three new terms that we will define here. An

iteration is an evaluation of a single hyperparameter set – in other words, one

single training and validation of the specified data science pipeline. A trial involves

multiple iterations constituting a single run of the SmartSearch algorithm, resulting

in the best possible pipeline at the end of the specified iterations. An experiment,

then, consists of multiple trials on a single pipeline for a single dataset.

For each pipeline, we ran one experiment using BLB and another in which we

operated on the whole dataset (non-BLB). Each experiment consisted of ten trials of

SmartSearch with 30 iterations in each trial. Each SmartSearch trial then consisted of

the evaluation of 30 hyperparameter sets, with the first 3 hyperparameter sets chosen

at random, the next 24 hyperparameter sets chosen by the nLGCP algorithm with

the Upper Confidence Bound acquisition function, and the final 3 sets chosen simply

using the highest predicted score. We ran three experiments in this case: the HOG

image pipeline, the CNN image pipeline, and the traditional text pipeline. The BLB

hyperparameters used for these experiments were bag size 𝑏 = 𝑛0.6, number of bags

𝑠 = 8, and number of multinomial samples 𝑟 = 20.

Computation used

For the BLB experiments, we used an Apache Spark cluster consisting of four m4.4xlarge

machines, each of which have 16 vCPUs and 64 GiB of memory. For the non-BLB

experiments, we used an m4.16xlarge machine, which has 64 vCPUs and 256 GiB

memory.

9.4 Evaluation

The train-validation split varies for the BLB and non-BLB pipeline processes and by

dataset.
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9.4.1 MNIST Dataset

In the MNIST dataset, we have 42,000 data points, which we split into a training

dataset of 36,000 data points and associated labels as well as a validation set of 6,000

data points and associated labels. The non-BLB process is run by training on the

36,000 data points and validating on the 6,000 data points for each hyperparameter

set, and then outputting the score on the 6,000 data points from the validation set

to SmartSearch.

In the BLB process, we use the 36,000 data points for training and validation and,

for final comparison in the below analysis, calculate the score on the remaining 6,000

data points by training the estimator with the chosen hyperparameters on the 36,000

training points and outputting the score of that trained estimator on the remaining

6,000 data points. This split was chosen to make a more appropriate comparison

between the performances of the BLB and non-BLB hyperparameter sets chosen, as

these sets are then trained and validated with the same data.

9.4.2 Text Dataset

In the dataset from Kaggle’s competition, we have 25,000 text reviews and their

associated labels, and we choose a train-validation split similar to that used on the

MNIST dataset. We split our dataset into a training dataset of 20,000 data points and

associated labels as well as a validation set of 5,000 data points and associated labels.

The non-BLB and BLB processes are then the same as for the MNIST dataset with

these training and validation datasets. With both of these methodologies, BLB has a

disadvantage, as fewer data points are available to the training and validation process

than in non-BLB evaluation (6,000 more images, and 5,000 more text reviews).

9.5 Results

In our experimental results, we found that sampling-based hyperparameter optimiza-

tion using BLB leads to performance improvements comparable with those obtained
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by evaluating the entire pipeline.

To see this result, we can first plot the improvement over the course of the Smart-

Search process for each pipeline, averaged over the ten experiments. In Figures 9-1,

9-2, and 9-3, the horizontal axis corresponds to the iteration number and the verti-

cal axis corresponds to the best estimator performance before and including a given

iteration.
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Figure 9-1: Experimental averages for the HOG image pipeline.

The performances from BLB and non-BLB estimator evaluation for all of these

pipelines are comparable, with the BLB iterations demonstrating similar performance

improvements. In the HOG image pipeline, the BLB evaluations actually slightly out-

perform the non-BLB evaluations, likely as a result of the higher average starting ac-

curacy. In the CNN image pipeline, the BLB evaluations show the least improvement

of the three pipelines relative to the non-BLB evaluation. This underperformance is

likely due to neural networks’ reliance on large datasets, as training and validating a

CNN on only ⌈360000.6⌉ = 542 data points is expected to lead to poor performances.

The performance increases for the BLB evaluation traditional text pipeline are quite

near those of the non-BLB evaluation, and the lower average starting performance

can be attributed to the small amount of experiment data.
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Figure 9-2: Experimental averages for the CNN Image pipeline.
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Figure 9-3: Experimental averages for the traditional text pipeline.

We can also evaluate the improvement more quantitatively, examining the aver-

age improvement and standard deviation of that improvement for both the BLB and

non-BLB processes in Table 9.2. As we can see, the mean performance improvements

are comparable for the pipelines, with the CNN image pipeline leading to lower im-
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Table 9.2: BLB and non-BLB processes statistic.
BLB Non-BLB

Mean Std. Deviation Mean Std. Deviation

HOG Image Pipeline 0.065 0.056 0.071 0.063
CNN Image Pipeline 0.0068 0.0053 0.0135 0.012
Traditional Text Pipeline 0.126 0.066 0.123 0.067

provements for the reasons detailed below.

9.6 Discussion

When evaluating the hyperparameter sets chosen by the BLB and non-BLB Smart-

Search experiments, we can see that their results follow intuition by manual inspec-

tion. For example, in the HOG pipeline we use a random forest estimator with the

number of trees as a hyperparameter, and the hyperparameter sets chosen by the

SmartSearch consistently choose the highest number of trees (ten). This finding is

what we would expect, as our random forest classifier generally improves with addi-

tional trees. However, the computation time also scales linearly with the number of

trees, so the hyperparameter sets chosen take longer to evaluate. In future work, a

scoring metric that incorporates a tradeoff between accuracy and computation time

– perhaps by incorporating a linear penalty on the amount of time spent running the

pipeline – could be implemented to incorporate a time-accuracy tradeoff based on

user preferences.

The focus in these initial experiments was obtaining accurate estimates adequate

for use in Bayesian hyperparameter optimization, not empirical speed improvements.

While we see that the performance improvements are comparable, we do not see sig-

nificant computational speed-ups in our initial experiments. This observation is due

to three factors: 1) The datasets used are small, so the asymptotic benefits of the

BLB algorithm are not realized; 2) We have not tuned the Apache Spark-specific pa-

rameters, leading to greater overhead; 3) Our implementation is in Python, incurring
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substantially more overhead than an implementation in a lower-level language or a

language with more native integration with Spark. When increasing the computa-

tional power of the cluster machines, we saw that the speed improvements were small,

which we attribute to the small dataset size leading to the Apache Spark overhead

dominating the computation time.

The performance improvements for the CNN image pipeline are smaller than for

the more traditional pipelines, which aligns with the conventional intuition that neu-

ral networks need large amounts of data to achieve high accuracies. The amount

of data given in each bag is ⌈360000.6⌉ = 542, so the reduced improvement in the

hyperparameter optimization is reasonable given this extremely small data size.

The performance improvements we have seen are impressive, as even operating

on small subsets of the data leads to performance improvements on par with pipeline

evaluations on the entire datasets. These empirical results demonstrate the validity

of using BLB for pipeline evaluation in hyperparameter optimization. Future work

can optimize the existing Deep Mining system to reduce computational overhead to

take full advantage of this asymptotic improvement.
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Chapter 10

Conclusion

In this work, we have established the validity of using Bag of Little Bootstraps for

sampling-based evaluation of data science pipelines. We have presented the Deep

Mining system, providing an alternative to the black-box approaches of existing hy-

perparameter optimization systems. By using a structured approach to pipeline con-

struction, we enable parallelization of pipeline evaluation and provide a distributed

system capable of multiple parallelization techniques. By establishing clear abstrac-

tions for statisticians, domain experiments, and systems programmers, we enable

future contribution across application areas.

10.1 Future Work

This project has significant potential for future development. While various possibili-

ties have been previously discussed in this thesis, various other future directions exist.

Rank-based search. When using the Bag of Little Bootstraps algorithm adapted

for machine learning techniques, the scale of pipeline performances changes signifi-

cantly. However, while we expect that the magnitude of difference between pipeline

scores will change, the rank has the possibility to be more consistent. To aid in the

Bayesian optimization, a rank-based hyperparameter search could be implemented,

using the ranks in the GP or GCP modeling rather than the raw scores themselves.
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An adaptive sampling approach: As a single hyperparameter optimization in

Deep Mining progresses, the Bayesian model of the hyperparameter space continues

to improve. In making the trade-off between exploration and exploitation, the cost

allocated to each pipeline evaluation could increase with more iterations. In the first

hyperparameter sets tested, smaller sample sizes could be used, with more data used

for training and validation as the model of the hyperparameter space increases its

precision. This strategy could be adopted for BLB and non-BLB hyperparameter

evaluations. When using BLB, the BLB hyperparameters could be altered as the

optimization progresses: the 𝛾 exponent specifying the bag size could gradually be

increased, or the number of bags used or Monte Carlo iterations could be set to higher

values. In non-BLB pipeline evaluation, the size of the subsample could be gradually

increased with higher iterations.

BLB improvements: Bag of Little Bootstraps can be used to produce confidence

intervals [18], and this capability could be incorporated into Deep Mining. This ad-

dition would give data scientists projections on how the sample-evaluated pipeline

would fare on the entire dataset. Also, the bag and Monte Carlo estimates from the

BLB sampling hierarchy could all be used as inputs to the Bayesian modeling process,

which could improve accuracy by giving more information than a simple average. The

hyperparameters for BLB can also be autotuned as described in [24], eliminating the

additional hyperparameter specifications required for a user who wants to alter the

default hyperparameters in a more informed way.

Improved Bayesian modeling: With increased use of the Deep Mining system,

additional pipeline hyperparameter-score datasets will be available. The Bayesian

models used can benefit from this information by incorporating information from

these previous, related pipeline evaluations into new pipelines in similar domains, as

in multi-task Bayesian optimization. A sensitivity analysis in the hyperparameter

space could also be outputted by the DeepMine function.

98



Appendix A

Comments on Apache Spark

While it provides significant speed improvements and enables an extremely general

set of workflows, Apache Spark does come with its difficulties. A frequent complaint

made about Apache Spark is the use of specialized terminology in its documentation

and steep learning curve for users in developing familiarity with the system, often

relegating the use of Spark to systems experts. With little prior programming experi-

ence with distributed systems, I found these and other difficulties when incorporating

Spark into Deep Mining:

∙ Tools that are not maintained

Spark provides scripts to setup a cluster on EC2 machines, but they are out-

dated: They require multiple additional steps (e.g., re-installing Spark on the

resulting instances) and leave out useful functionality, spawning an array of er-

ror messages upon startup. While the principle functionality is accessible after

few additional steps, this tool could certainly be improved.

∙ PySpark Debugging Difficulties

The largest downside I found while using Spark was that debugging code that

uses PySpark is quite convoluted: Tracebacks are duplicated and pass through

an array of internal Spark files; error messages are cryptic, citing errors in the

JVM and giving uninformative messages for common problems; and few sug-

gestions are given to the programmer. The disconnect resulting from processes
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running natively on the JVM makes Python programming both less efficient

and usable.

∙ Inconsistent API between local and cluster machines

For example, the addFile() method for SparkContexts supports recursive mode

only with local clusters or Hadoop-supported file systems. Requiring changes

in user code between local and cluster complicates the implementation process,

and the addition of support for features in both local and cluster would unify

the API.

∙ Lagging Python support

Spark development typically focuses on first implementing new features in Scala

or Java then updating Python APIs, resulting in a lack of features available in

Python and a slower implementation overall.

∙ Lack of code examples in documentation

Examples for common Spark uses could be expanded, especially for running

in cluster mode from within Python files. Tutorials for launching and running

code on clusters would significantly speed the learning process for new users.
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Appendix B

Functions and abstractions in

DeepMine

The DeepMine function and the data loading utility d3m_load_data take as input

a variety of arguments to enable their functionality, and the tables in this appendix

describe those arguments in detail.
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Table B.1: Deep Mining Functions
Function Description Is called by Calls

d3m_load_data Loads data in either matrix or raw format and splits the data into
training and validation sets. Data in matrix format is handled within
the function, and dataObject methods are used for D3M-formatted
data.

User dataObject methods

DeepMine Runs the hyperparameter optimization given a dataObject instance,
parsing user arguments and setting up pipeline evaluation framework.
All other abstractions are encapsulated within this function except for
d3m_load_data.

User BLB get_pipeline_score,
SmartSearch methods
(including parallel)

set_hyperparams_dm Wrapper that sets hyperparameters for sklearn pipelines User None

BLB get_pipeline
_score

Wrapper for the run_blb function that creates a pipeline given a
dictionary of hyperparameters and executes run_blb

DeepMine run_blb

run_blb Executes pipeline scoring using BLB given a pipeline object, data, and
other parameters.

BLB get_
pipeline_score

score_bag (which executes
multinomial sampling within
each bag)

dataObject Python class providing utilities to parse data in D3M format d3m_load_data Own methods

(folder)
examples/pipelines

Folder containing all pre-made pipelines as well as custom functions for
image, text, and other datasets

User Own methods

(folder) GCP Implements Gaussian Copula Process model. SmartSearch Own methods

(folder) smart_search Implements the SmartSearch algorithm for hyperparameter tuning
using GP or GCP. Also implements the hyperparameter sets in parallel
method

GCP Own methods
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Table B.2: Classification of Pipeline Steps

Type Subtype Description
Transformer

Custom Transformers implemented using the FunctionTransformer object and custom user functions
scikit-learn Transformers already implemented by scikit-learn (e.g., PCA)
Independent Transformers that operate on each data point independently (e.g., HOG)
Joint Transformers that must operate on the entire dataset (e.g., Bag of Words)

Estimator
Custom Estimators implemented using BaseEstimator, with fit and score methods implemented by user
scikit-learn Estimators already implemented by scikit-learn
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