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ABSTRACT
We propose graphical models as a new means of understand-
ing genetic programming dynamics. Herein, we describe
how to build an unbiased graphical model from a popula-
tion of genetic programming trees. Graphical models both
express information about the conditional dependency re-
lations among a set of random variables and they support
probabilistic inference regarding the likelihood of a random
variable’s outcome. We focus on the former information: by
their structure, graphical models reveal structural depen-
dencies between the nodes of genetic programming trees.
We identify graphical model properties of potential inter-
est in this regard – edge quantity and dependency among
nodes expressed in terms of family relations. Using a simple
symbolic regression problem we generate a graphical model
of the population each generation. Then we interpret the
graphical models with respect to conventional knowledge
about the influence of subtree crossover and mutation upon
tree structure.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming

General Terms
Algorithms

Keywords
genetic programming, graphical models, Bayesian network

1. INTRODUCTION
We begin by noting that the population of a GP run can be

regarded as observed stochastic samples of a set of random
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variables where the stochasticity injected into the samples
changes over time (generations) due to the evolutionary op-
erators of selection, mutation and crossover. Alternatively,
but equivalently, the GP population each generation can be
regarded as observed samples of a different statistical pop-
ulation. Generally, a GP run is the outcomes from a set of
random variables, spaced in time at the interval of genera-
tions.

The population dynamics of genetic programming are still
not completely understood (15), i.e. how the dependencies
between the solutions vary in the population and how they
changes over time (generations). Using the insight that each
genetic population of a GP generation is a set of samples, our
aim is to model the statistical population from which they
are drawn as a distribution of random variables. We will
then analyze the changes in each distribution as the gener-
ations proceed. Previously, analyzing a GP run’s dynamics
has focused on studying the distribution of tree size, tree
depth or solution fitness as probability distributions or sim-
ply calculating the moments of this distribution like mean
and standard deviation (17). In contrast, our method is a
probabilistic statistical approach.

We examine how to build a multivariate distribution Π
which is represented by a set of samples (a generation) of
GP trees. We use a prototype tree which is the size and
shape of the largest possible GP tree for the problem. Each
node of the prototype tree represents a random variable. GP
trees are mapped onto the prototype tree to become samples
of the multivariate distribution, see Fig. 1. We use a prob-
abilistic graphical model to represent this multivariate dis-
tribution. (In a graphical model a directed acyclical graph
denotes the conditional dependences between random vari-
ables.) To efficiently build Π requires accommodating GP
trees which are of variable sizes and shape, identifying the
best possible representation of the graphical model (GM)
given a set of trees, and devising computational efficien-
cies which allow the building of the graphical model to be
tractable.

In the last two decades building graphical models and as-
sociated inference engines has been addressed by numerous
researchers (7; 11). We explored a variety of techniques
(which lead to different graphical models) from this body of
literature to address the challenges graphical model building
in the GP context specifically poses. We present one tech-
nique in Section 3. It is chosen because it is unbiased with
respect to any assumptions about variable dependency.
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Figure 1: A prototype tree of depth d = 2, two
example GP trees, and, as a result of alignment with
the prototype tree, their random variable outcomes.
Note that we do not show # (null) nodes.

Once we describe computationally efficient means to build
a probabilistic graphical model we proceed to analyze how
the generational graphical models transition over the course
of a run as a result of selection and crossover. Specifi-
cally, we set up a very simple GP symbolic regression prob-
lem (Pagie-2D (16)) to execute over a fixed number of gener-
ations. Then we execute experiments composed of GP runs
which vary the presence or absence of different operators.
For each set of runs with a particular variation operator
(only crossover or only mutation), we then aggregate all the
trees of a generation and treat this as a set of samples from
which we build a graphical model. We analyze the changes
in the resulting graphical models as we process one genera-
tion after another.

The paper’s contributions are:

1. Use of probabilistic graphical models for modeling struc-
tural dynamics of a population of GP trees

2. Description of an efficient technique to build graphical
models. The technique needs to be fast because our
aim is to to build graphical models for the population
from every generation. The technique further needs
to be unbiased to permit the data to be as accurately
reflected as possible.

3. Analyzes of GP tree dynamics in different variational
operator scenarios with respect to structural depen-
dencies mapped from graphical models.

We proceed in the following manner: In Section 2 we
present an overview of current techniques that analyze GP
populations. In Section 3 we present how we resolve the
issues arising in how to build a graphical model for a GP
population. We also present how we have used a genetic al-
gorithm to efficiently learn the structure of a Bayesian net-
work from a fully observed data set. In Section 4 we present
the results for a first set of statistical analyzes that reference
generational graphical models. We present our conclusions
and future work in Section 5. The Appendix describes the
building of the graphical model in more detail.

2. BACKGROUND
Many different statistics have been used to study GP.

Widely used and reported, “conventional” analyzes include
a time series plot, per generation, of mean, standard devi-
ation, maximum and minimum size of structure (e.g. tree,

graph or other executable representation) or population fit-
ness. Tomassini et al. (21) study fitness distance correlation
as a difficulty measure in genetic programming. Langdon
and Poli (12) analyze the behavior of GP on a wide range
of problems, e.g. artificial ant and the Max Problem using
schema analysis and Price’s covariance and selection theo-
rem.

Nearly all visualizations of structure have been for illus-
trative purposes according to Daida et al. (5), who visualized
tree structures in GP. This new way of “seeing” can afford a
potentially rich way of understanding dynamics that under-
pin GP. Almal et al. (2) perform a population based study of
evolutionary dynamics in GP and show that heat maps are
a useful tool for exploring the dynamics of genetic program-
ming. The visualization allows the user to draw conclusions
from data. We expand on this by inducing a graphical model
to both visualize and explain the structure and content of a
GP tree.

Daida et al. (6) study phase transitions in GP search to
support a statistical mechanics approach where GP would
be quantitatively compared to a broad range of other sys-
tems rigorously described by phase transitions. In order to
identify subtrees that carry out similar semantic tasks, Wolf-
son et al. (22) perform post-evolutionary analysis of GP by
defining a functionality-based similarity score between ex-
pressions. Similar sub-expressions are clustered from a num-
ber of independently-evolved fit solutions, thus identifying
important semantic building blocks lodged within the hard-
to-read GP trees.

Raidl and Gottlieb (18) empirically investigate locality,
heritability and heuristic bias in Evolutionary Algorithms
by generating individuals with static measurements based on
randomly created solutions. This is done in order to quantify
and visualize specific properties, and shed light onto the
complex behavior of the system. Here, we take a different
approach and we investigate the structure and contents of a
GP tree by creating a graphical model from a population of
GP trees.

In a paper by McPhee and Hopper (13) they analyze
genetic diversity through population history by size and
showed that the genetic diversity was low. They measure
the number of different nodes in the population based on if
the nodes begin at the root or non-root. Our study differs by
investigating the dependencies between the nodes in the so-
lutions based on a graphical model from the solution. Thus,
we do not need to identify any relationships between individ-
ual solutions in the population, instead we take a statistical
approach and learn a model of the population.

3. GRAPHICAL MODELS FOR GP
Our goal is to model the multivariate distribution of the

trees in the GP population in generation t. We denote this
by Πt. The following issues are resolved in order to build a
multivariate distribution for the population:

GP trees are of variable size: Because a population’s trees
vary in size and structure and GP’s representation is
not homologous, the question of defining the random
variables is open to question. We choose a prototype
tree based approach in which each node in a tree with
a maximum size is a random variable and its support
is all possible functions and terminals that could be at
its position. We present more details in Section 3.1.
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Defining the random variables in this manner provides
us with a fixed set of variables for the multivariate
distribution.

Modeling the multivariate distribution: Our represen-
tation of the multivariate distribution needs to allow
us to gain insight from it. We choose a Bayesian net-
work based representation which allows us to identify
directed dependencies between the nodes of GP trees.
We provide more details in Section 3.2.

Efficient building of the distribution: Given our choices
of a prototype tree for the random variable set and a
Bayesian network model, a further challenge is to build
the distribution efficiently.

3.1 GP trees to random variables
To define the random variables for the modeling distribu-

tion we adopt a prototype tree based approach, see Fig. 1.
Prototype trees have been used to represent GP trees when
developing estimation of distribution based GP (EDA-GP),
e.g. Salustowicz and Schmidhuber (19) and Hasegawa and
Iba (8). A prototype tree is the size and shape of the largest
(i.e. completely full) tree in the GP experiment. Each node
in the prototype tree designates a random variable whose
support (possible outcomes) depends on its position in the
tree. That is, the root of the prototype tree, which can as-
sume any function, is a random variable with its support
being the problem’s function set because each function is a
possible outcome for the root’s random variable. Each leaf
of the prototype tree, which can only assume a terminal, is
a random variable with support comprising the problem’s
terminal set (because each terminal is a possible outcome of
a leaf’s random variable). For each interior node, support
is the set of all functions and terminals because each termi-
nal or function is a possible outcome of an interior node’s
random variable. Because any GP tree may be smaller than
the experiment’s prototype tree, an extra outcome, null, is
added to the support at every node except the root.

For example, for a symbolic regression problem with func-
tion set {+,−, /, ∗} and terminal set {x1, x2}, prototype tree
leaves have a support of two terminals and null, the root has
a support of four functions, and all the intermediate nodes
have a support of six outcomes (function set, terminals and
null). The number of random variables in the multivariate
distribution at time t, Πt depends on the size of the proto-
type tree. The fundamental challenge in using a prototype
tree based representation is supporting a large prototype
tree so that every possible size or shape of a GP tree within
a run can align with the prototype tree.

The GP tree population at a generation is a set of sam-
ples. To transform a tree to a sample, it is aligned with
the prototype tree from the root downwards. Each function
or terminal of the sample is counted as an outcome of the
random variable onto which it maps in the prototype tree.
Where the sample tree has no nodes, null outcomes are as-
sumed. Figure 1 illustrates the transformation of a set of
GP trees to outcome statistics of the prototype tree’s ran-
dom variables. As a graphical model for Πt is built for each
generation, the population of GP trees is transformed to
samples by alignment with the prototype tree, and the out-
comes of the random variables are statistically accumulated
from each sample.

We choose a Bayesian network representation for the graph-
ical model because it allows us to analyze the changes in the
multivariate distribution via its graphical properties. Next,
we describe this representation.

3.2 Bayesian networks as a graphical model
We can associate the population in standard GP with an

implicit probability distribution over the random variables in
the prototype tree. We want to explicitly model this distri-
bution, and examine the dependency structure that emerges
between nodes in the prototype tree. Our modeling tool of
choice is the Bayesian network, consult (11) for an introduc-
tion to Bayesian networks. A Bayesian network B = 〈G, θ〉 is
a probabilistic graphical model that represents a joint prob-
ability distribution over a set of random variables Y1, . . . , Yn.
The Bayesian network representation has two components.
A directed acyclic graph (DAG) G encodes (conditional) in-
dependence relations between random variables. More pre-
cisely, a missing edge encodes an independence relationship.
Each random variable is a node in this graph. A set of lo-
cal probability models θ defines the conditional probability
distribution of each node given its parents in the graph. Let
PaY denote the parents of node Y in G. Then the network
B encodes the following probability distribution:

P (Y1, . . . , Yn) =

nY
i=1

P (Yi | PaYi).

Learning Bayesian networks from data has received much
attention in the machine learning community (11). The
space of all possible DAGs for n nodes is super-exponential
in n, and finding the optimal network for a given data set is
in general NP-hard (11). Learning algorithms for Bayesian
networks loosely fit in two categories: constraint-based ap-
proaches, which use statistical tests to determine whether
an edge is present or not, and search-and-score techniques,
which define a scoring function and then search for a high
scoring network. The scoring function prefers network struc-
tures that model the data set well, while penalizing struc-
tures that are too complex.

3.3 Learning network structure
Some search-and-score techniques, such as the K2 algo-

rithm (4), require that we prepare an edge order for learn-
ing the parameters of the nodes. Given an order, an edge
can appear between nodes A and B only if A precedes B
in the order. In our case of prototype trees for GP, speci-
fying an accurate node order is not obvious. For example,
if we impose a left-to-right depth-first search order, then a
node in the graphical model cannot have an edge from its
right sibling or its right uncle. In GP terms, this implies
we would not sample relationships among the functions and
terminals which are parameters of a parent function, in a
right to left order. In Fig. 2 the possible dependencies in
left-to-right depth-first order is shown, the dashed arrows
are impossible dependencies given the ordering. If we im-
pose a left-to-right breadth-first search order, a node in the
graphical model cannot have an edge from any node to its
right (at the same height) or below it. K2 is commonly
used in EDA-GP (8) where the node order is assumed to
be depth-first search yet its assumptions are not necessarily
valid.

Because we wanted to discover the true dependency struc-
ture in a population’s distribution, we aimed to impose as
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Figure 2: Shows order bias, with possible depen-
dencies in left-to-right depth-first order depicted by
the arrows, the dashed arrows are impossible depen-
dencies given the ordering. In the square the string
representation of the tree, with the same possible
and impossible dependencies, is shown.

A B C D E F ...

Figure 3: Possible structure with known node or-
der. Suppose the node order is A, B, C, D, E, F, ....
This means that every edge in the network must go
from left to right. Suppose we have already found
the best parent sets for nodes A, B, C, and D, and
are now considering node E. Each of E’s parents
must precede E in the order. We can add any of
the edges shown in red without introducing a cycle.
Furthermore, the parents we choose for E will not
limit the choice of parents for nodes F and beyond.

few restrictions as possible on the type of graphical model
structure we could learn. Thus, we opted for a search-
and-score algorithm that did not require a node order as
input (1). This algorithm uses an evolutionary algorithm
in a search-and-score approach to propose and search for
node orders leading to an optimal network structure. For
each order the EA proposes, the algorithm then identifies
an optimal network structure. This requires evaluating ev-
ery structure that is consistent with that order. Since in our
approach each individual is an order, this identification oc-
curs during the evaluation of an individual’s fitness. While
the identification is computationally expensive, the number
of structures (DAGs) that are consistent with the order is
finite. In Section A, we present a scalable approach to sys-
tematically overcome the computational burden.

When learning the order of a DAG, parents of any node
Y must precede Y in the ordering. In other words, given
a node ordering R, such that for any nodes X and Y , if

X
R
< Y (X precedes Y in R), then any edge between X and

Y must be directed from X to Y . The ordering constraint R
allows the choice of parents for one node to be independent
of the other nodes’ parents. This is because any combination
of edges consistent with the ordering R produces an acyclic
graph. Figure 3 illustrates this observation.

With a decomposable score this makes the choice of par-
ents for any node X independent of the choice of parents
for any other node Y . A decomposable score allows us to
evaluate parent sets for each node independently and select
the best one for each node and total score of the entire net-
work is the total sum of all the scores for each node. It is
apparent that the minimum across each node’s family score
minimizes the overall score as well. This means that now
we can search for each node’s parent set independently. If
we limit the indegree (number of parents) of every node to
a constant k < n/2, then there are at most
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possible parent sets for each node, where n is the number of
nodes in the network. Finding the optimal parent set for all
nodes thus requires at most

n · O(nk) = O(nk+1)

parent sets to be evaluated, which is polynomial in n, for a
fixed k. This means that we can exhaustively search over
the space of networks that are consistent with an ordering
R and have an indegree of at most k.

Of course, an O(nk+1)-time exhaustive search is only rea-
sonable if k is small (up to about 3 or 4). This restric-
tion is not as bad as it seems, because we cannot learn
Bayesian networks with large parent sets anyway, unless we
have an extremely large training set. To see why, consider a
Bayesian network where all variables are binary. If a variable
X has no parents, then to compute the Bayesian score we
only need two counts from the training set: M [X = 0] and
M [X = 1]. If X has one parent Y , then we need four counts:
M [X = 0, Y = 0], M [X = 0, Y = 1], M [X = 1, Y = 0], and
M [X = 1, Y = 1]. If X has two parents, we need eight
counts, and so on. In general, if X has k parents, we need
a total of 2k+1 counts. As the number of parents PaX in-
creases, it becomes less and less likely to find representative
counts for all possible assignments M [PaX = paX , X = x]
in the training set. This phenomenon of data fragmentation
means that we can only learn networks where each node has
a small numbers of parents. Thus, setting the maximum
indegree k to a small value is justified.

4. EXPERIMENTS
In this section we start by describing our choice of demon-

stration problem (Section 4.1), our procedure for transform-
ing population data into graphical models (Section 4.2) and
how we set up a number of experiments (Section 4.3) for
which we build a graphical model every at generation. By
their structure, graphical models reveal structural depen-
dencies between the nodes of genetic programming trees. In
Section 4.2 we identify graphical model properties of poten-
tial interest in this regard – edge quantity and dependency
among nodes expressed in terms of family relations. We
then interpret each experiment in light of the operator it
has used and the information the graphical model conveys.
This section contains an extended analysis of experiments
initially done in (9) and (10).

4.1 Demonstration Problem
Because our goal is to figure out the nature of insights

a graphical model offers in terms of its dependency struc-
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Table 1: Parameters for the GP runs in ECJ. XO is
crossover, Mut is mutation, No ops is selection with-
out variational operators and No Sel is crossover
with random selection.

Parameter XO Mut No ops No Sel
Crossover 0.9 0.0 0.0 0.9
Mutation 0.0 1.0 0.0 0.0
Selection Tournament size 7 Random
Population size 10,000
Generations 40
Initialization Ramped Half-Half
Max Depth 5
Language Symbolic Regression
Functions (F) {+,−, ∗, %}
Terminal (T ) {x,y, 0.1, 1.0}

ture, for our experiments we choose Pagie-2D (16) which is
a simple but sufficiently realistic symbolic regression prob-
lem with a modestly sized set of functions and terminals.
The problem is to regress an expression matching the target
function 1/(1 + x−4) + 1/(1 + y−4) over 676 fitness cases in
[−5, 5]2, and fitness is calculated as the mean squared er-
ror. The GP parameters are summarized in Table 1, and
% is protected division. We run standard GP on the Pagie-
2D problem using tournament selection with a tournament
size of 7 and ramped half-half initialization. We employ a
prototype tree of depth 5, which has 63 nodes implying an
equivalent maximum tree size for the Pagie-2D runs. Our
runs execute for 40 generations, using ECJ1, with a popula-
tion size of 10,000.

4.2 Graphical Model Building Procedure
After each generation, we store the entire population to

disk so we can build its corresponding graphical model. We
start by converting each population into a data set D with
one row for every tree and 63 columns, one per outcome
of the 63 random variables. We represent each tree as a
row of 63 outcomes, by aligning it to the prototype tree,
starting from the root, with a depth-first order traversal
and substituting null for any node of the tree not in the
prototype tree.

The root can take any outcome from the set of func-
tions: Sroot = {+,−, ∗, %}. The leaves can take any out-
come from the set of terminals, as well as null: Sleaf =
{x, y, 0.1, 1.0, null}. Intermediary nodes can take any out-
come from the set of functions and terminals, as well as
null: Sintermediary = {+,−, ∗, %, x, y, 0.1, 1.0, null}. Thus,
our data set D’s columns are 63 random variables Y =
{Y1, Y2, . . . Y63}. Each variable is discrete, and its support
is either Sroot, Sleaf, or Sintermediary. We then learn, as de-
scribed in Section 3, a graphical model for the distribution
P (Y1, Y2 . . . Y63|D).

4.3 Experiment Definition and Method
We define three experiments which vary in terms of GP

operator in order to detect differences in this respect:

No variational operators Neither crossover nor mutation
is used, selection only acts on the population.

1http://cs.gmu.edu/~eclab/projects/ecj/

Crossover Single point subtree crossover is the only vari-
ational operator and it is used in combination with
selection.

Mutation Subtree mutation is the only variational opera-
tor and it is used in combination with selection.

No selection Single point subtree crossover is the only vari-
ational operator and selection is random.

Each experiment consists of 30 independent runs. For each
run we build a graphical model each generation. This results
in 1200 graphical models per experiment and 4800 graphical
models overall.

4.4 Study of Graphical Model Properties
This section outlines the properties of the graphical model

which is studied as well as the results from the different
experimental setups. The aim is to identify properties which
can explain the dynamics of GP populations.

4.4.1 Edge Quantity
Fig. 4 shows an example graphical model for a GP popula-

tion at generation 25 (G25), taken from a run using crossover.
In addition to studying graphical models at different gener-
ations directly, a graphical model structural property wor-
thy of attention is the number of edges in the graph. In
graphical model terms, because an edge from Node A to
Node B implies that the likelihood of random variable B
depends on random variable A, edge quantity reveals the
degree of variable inter-dependence. Edge quantity conveys
different information from previous work in GP where, by
simple counting, the frequency of symbols is determined or
even the frequency of symbols in specific tree locations is
determined. Simple counting does not reflect dependencies
which the graphical modeling mines from the population by
treating it as samples and using max-likelihood estimation.
Given that a graphical model supplies dependency informa-
tion, these dependencies should then be mapped back to
the prototype tree to provide interpretation in a GP con-
text. That is, each random variable of a graphical model
maps to a node of a prototype tree which in turn maps to
the symbol set, i.e. the function and terminal sets, of a GP
experiment.

We can formulate one simple hypothesis: a random pop-
ulation of GP trees would result in a graphical model where
there are arbitrary dependencies (i.e. edges) between nodes
compared to a population evolved later in a run. The later
population has been “shaped” by selection and variation
so it will be reflected by a structure in the dependencies.
These dependencies will reflect the complex mapping be-
tween genotype and phenotype, i.e. the direct representation
of the solution and its behavior. Fig. 5(a), with data aggre-
gated over each of the four experiments, shows the change in
edge quantity over generations. It provides one unit of evi-
dence for the hypothesis. In the initial populations’ graph-
ical model there are few edges, then, due to selection, the
number sharply rises regardless of whether variation is em-
ployed. When a variational operator is employed, subse-
quently the edge quantity diminishes and eventually tapers.
This can also be seen for the run without selection, where
the rise is significantly smaller. We speculate that this dy-
namic will generally remain the same with other problems
due to the macro-influences of the operators but will vary in
detail due to the unique fitness landscape of every problem.
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Figure 4: A graphical model for generation 25 from a run of the crossover only experiment.
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Figure 5: Edge quantity plots

Edge quantity can be studied further. Fig. 5(b) indicates
how many edges there are at each depth level of the proto-
type tree by showing the average number of edges per node,

with error bars, for a run which used crossover. The nodes
are ordered depth-first left-right. The coloring shows the
depth level of the node and the number of edges are nor-
malized according to the possible number of edges, 62. We
observe more edges at lower depth levels.

4.4.2 Edge Type
While a random population’s graphical model edges will

generally span, in GP terms, between a node and its parent,
we would hypothesize that an evolved population’s edges
would span between a node and its sibling and even, to
higher ancestral generations (in tree structure terms), to its
uncles and grandparents or farther. This leads us to inves-
tigate the ancestral property of edges.

We therefore also perform a basic enumeration of differ-
ent types of edges. We define parent, sibling, grand-parent,
grand-grand-parent, grand-grand-grand-parent, grand-grand-
grand-grand-parent, uncle, and unclassified types. Sibling
edges are one direction only: a sibling is the rightmost child
of a parent but not the leftmost child of a parent. The edge
types are illustrated in Fig. 6(a) using different dashes to
denote each type. In Fig. 6(b) an example tree with a count
of parent, left sibling, nephew and grandparent edge types
is shown.

The interpretation of edges according to this structural
ancestry typing is interesting. To see this, it is necessary to
conceptually map between a prototype tree’s (or graphical
model’s) edges to GP context in the following manner: A GP
tree is a representation for an (executable) expression that
is a nested set of functions where arguments of a function
are recursively themselves functions until the recursion“bot-
toms out” where arguments are non-functions (variables or
constants, a.k.a terminals) represented as leaves. A GP tree
is evaluated (a.k.a executed or interpreted) by a preorder
parse where successive arguments are recursively evaluated
in preorder. The dependency edges to a leaf from nodes
above it in the tree indicate which functions in the expres-
sion depend on that argument’s value. If the dependency
edge is reversed in direction, i.e. from a leaf to a node above
it, it indicates that a function elsewhere in the tree (coming
either before or after the evaluation of the terminal when
the nested expression is evaluated) influences the value of
the terminal (e.g. whether it is 0.1 or 1.0 in Pagie-2D).

We now proceed to analyze each experiment wherein vari-
ation differs. We start with a baseline where the GP run uses
selection but no crossover or mutation.

4.4.3 No Variational Operators Experiment
When GP is run without any variation operators, selection
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Figure 7: Selection Only Experiment: graphical
models for one randomly selected run at generation
0, 13 and 40.

eventually hones in on a completely homogeneous popula-
tion. We find in our runs that this usually happens by gen-
eration ten. For one run, Fig. 7(a) shows a graphical model
of the random population at generation 0. It has relatively
fewer edges than subsequent generations. Fig. 7(b) shows a
graphical model of generation 13 when the number of edges
has increased. After the generation when the population
has converged to a single point, any variation we observe in
generational graphical models is due to the stochasticity of
the EA we use to build the model.

Recall that our model building algorithm limits the num-
ber of dependency edges from a node to three. This implies
that the maximum number of edges, given a prototype tree
of size 63, equals 183. Which is the case at generation 40,
when the population has completely converged to one GP
solution, per Fig. 7(c) the graphical model has the maximum
number of edges.

Next we consider edge types. The prevailing edge type
is parent, as shown in Fig. 8(a). This figure is a time se-
ries plot of edge type quantity expressed as the ratio of the
number of edges in the graph of the type to the total possi-
ble number of edges of the type. For example, for an edge
of type parent there are 62 possible edges, a ratio of 0.5
means that there are 31 edges in the graphical model of this

type. There are many different types of edges in a homoge-
neous population and they vary more between each genera-
tion compared to the experiments using operators. Half of
the edges are unclassified, the other half is almost uniformly
distributed between the edge types, except for grand grand
parent. Moreover, the sibling relations are not as frequent
compared to the experiments using operators. This is again
likely due to the fact that the population is homogeneous
and the structure finding algorithm is stochastic.

4.4.4 Mutation Only Experiment
In the experiment where GP was run only with a subtree

mutation operator for variation, we examine three resulting
graphical models at different generations, the quantity of
edges and their ancestry type.

Mutation randomizes the population, but selection pro-
motes the edge types associated with fit solutions. This
makes later generation graphical models distinguishable from
the initial population. The graphical models in Fig. 9 show
a selective pruning of edges over generations.

Consulting Fig. 5(a) as to the number of edges, we observe
the quantity rapidly increasing (in approximately the first
7 generations) to reach close to the maximum number of
possible edges in the graphical model, before decreasing to
almost the same number of edges as nodes. The edge ratios
shown in Fig. 8(b) indicate the most frequent type of edge is
from a parent to a child. As the number of edges decrease,
the most frequent edge type is parent, then sibling and some
uncles, with hardly any grand-parent dependencies. Our in-
terpretation is that by adding new random subtrees, muta-
tion creates new local dependence which is confined to the
subtree. It disrupts any dependencies extending out of the
subtree which it excises. This would imply that mutation
runs have more parent edges.

4.4.5 Crossover Only Experiment
Considering the experiment where GP was run only with

the subtree crossover operator for variation, we examine
three resulting graphical models from different generations,
the quantity of edges and their ancestry type.

The graphical models in Fig. 8(c) differ by generation and,
in unshown detailed graphical model data (animated gener-
ation by generation), we observe that the change from one
generation to the next is very gradual, more so than with
mutation. Consulting Fig. 5(a), we observe that initially
there are approximately 70 edges, while there is a peak of
approximately 180 edges around generation six. Then the

81



0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

R
at

io

Edge type ratios

 

 
parent
sibling (LR)
g−parent
gg−parent
ggg−parent
gggg−parent
uncle
unclassified

(a) Edge type ratios, no operators

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

R
at

io

Edge type ratios

 

 
parent
sibling (LR)
g−parent
gg−parent
ggg−parent
gggg−parent
uncle
unclassified

(b) Edge type ratios, mutation

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

R
at

io

Edge type ratios

 

 
parent
sibling (LR)
g−parent
gg−parent
ggg−parent
gggg−parent
uncle
unclassified

(c) Edge type ratios, crossover

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

R
at

io

Edge type ratios

 

 
parent
sibling (LR)
g−parent
gg−parent
ggg−parent
gggg−parent
uncle
unclassified

(d) Edge type ratios, no selection

Figure 8: Plot of the ratios of edges in different types. For Pagie 2D without crossover and mutation 8(a),
mutation 8(b), crossover 8(c) and no selection 8(d).

number of edges tails off and stabilizes at approximately 130.
When we align our animation with the fitness time series we
see the tail off synchronizes with approximately the same
generation when fitness stops improving and the population
has started to converge.

Considering the type of edges, per Fig. 8(b), we observe
that, after generation 20, almost all nodes in the graphical
model have an edge with their ancestor and half have edges
to their sibling. After 25 generations the ratios of the other
edges have somewhat stabilized. Fig. 5(b) is an example
of crossover only experiment. We see a consistency in the
number of edges given the depth level of the node in the
tree. As expected, the nodes at the lower depth levels have
fewer edges.

Crossover is a subtree swap. This implies that it preserves
more short and long range, i.e. ancestral dependencies such
as parent, sibling plus grandparent and uncle. Because of
the exchange, rather than the new material, it results in only

a minor net change in dependency, at the structural level.
Of course, the issue with crossover in GP is its semantic
consequences while its structural behavior directly follows
from its definition.

4.4.6 No Selection Experiment
For the experiment where GP was run with random selec-

tion and only the subtree crossover operator for variation,
we examine the quantity of edges and their ancestry type.

The graphical models for some generation are not shown,
but they have very few edges and the connections are mainly
between parent and sibling, we verify this by consulting
Fig. 8(d). In addition, in Fig. 5(a), we observe that initially
there are approximately 70 edges and within 6 generations
the number drops to the the minimum number of edges.
This effect is most likely due to the effect of initialization.

The next section will further discuss the results from the
different experiments.
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Figure 9: Mutation Only Experiment: graphical
models for one randomly selected run at generation
0, 13 and 40.
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Figure 10: Crossover Only Experiment: graphical
models for one randomly selected run at at genera-
tion 0, 13, and 40

4.5 Cross Experiment Remarks
Our understanding of mutation and crossover would lead

us to hypothesize that the dependencies being studied, due
to their structural nature, would be different. Comparing
Fig. 9 to Fig. 10 bears this out. In the crossover only ex-
periment we can observe that crossover’s graphical model in
the final generation has different dependencies and more de-
pendencies than mutation. This is interpretable: crossover
is an exchange with less net disruption while mutation intro-
duces new material while excising existing material. Both
operators culminate with approximately the same quantity

of parent edge types but reach this endpoint with different
trajectories (compare Fig. 8(b) to Fig. 8(c)). Crossover has
more siblings, and longer range dependencies with uncles
and grand-parents. This is consistent with the difference
between the two operators in terms of different extents of
dependence preservation and disruption.

From the different experiments which differ by variation
operator, we are able to distinguish distinctly different graph-
ical models, both regarding number of edges and type of
edges. For all runs, across the variation operator experi-
ments (i.e. excluding selection only), when inspecting the
fitness, the best fitness is only slightly improving during
the runs. The operators manipulate the population in such
a way that the dependencies between experiments differ.
When comparing the number of edges and the type of edges
from each experiment it can be seen that the number of
edges in the crossover only experiment is higher than for a
random population. The crossover operator helps to create
a population that has many parent dependencies, sibling de-
pendencies and some longer grand-parent dependencies. In
contrast, for the experiments with the mutation operator the
number of edges is the same as for a initial random popula-
tion, but the structure is quite different from initial random.
The types of edges are not the same as when crossover is used
either, there are hardly any longer dependencies, such as
grand-parents edges. When random selection is used there
are no long distance dependencies and the only the min-
imum number of edges after a the effects of initialization
have disappeared. Finally, the number of edges in a homo-
geneous setup is very high, reaching the maximum limit of
edges and the variation in edges is most likely due to the
stochastic learning of the graphical model.

A graphical model also provides a way to generate a GP
population from its parsimonious representation. It is an
approximate form of compression where a very important
property of the original population is preserved - variable
dependency. Further information from the graphical model
could be taken into account when designing operators in
GP, or reduced Bayesian network for EDA-style GP, as in
Hemberg et al (9).

5. CONCLUSIONS & FUTURE WORK
We have introduced graphical models as a new means of

investigating the dynamics of genetic programming popula-
tions in general and,in this work specifically, GP’s operators.
Graphical model based analysis is complementary to con-
ventional statistics that are tracked across generations. The
graphical model shows the dependencies between nodes in
GP trees when treated as a multivariate distribution repre-
sented as prototype trees. We presented an unbiased means
of deriving a graphical model and introduced an EA based
algorithm for efficiently finding graphical models. Moreover,
algorithm wise we only search for order of the nodes in
a graphical model, unlike K2 which searches for a graphi-
cal model given an order. We exhaustively search for best
graphical model for each order. For the purpose to overcome
the cost of exhaustive search, we initially build a cache and
ADTrees. These techniques speed up the fitness evaluation
in the creation of the graphical model.

It is important to recognize that alternate kinds of graph-
ical models could be built. Graphical models different from
the one we present have the potential to emphasize different
properties about GP’s population distribution. We envision
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future investigations that would answer which are most ap-
propriate and insightful for modeling GP dynamics. Our
motivation herein was to investigate whether insight into a
run’s dynamics at the population, tree structure level, could
be gained by observing the dependency structure graphical
models reveal about the multivariate distribution associated
with functions and terminals in GP trees. The graphical
model information is in this form structural rather than syn-
tax oriented.

Using Pagie-2D problems as exemplars, we take first steps
in analyzing generation and inter-generation dynamics of GP
runs in terms of changing graphical model structure. The
experiments show that there is a distinct difference in the
graphical model of a GP population when different operators
are used, both in the number of edges in the graphical model
and the types of edges.

For future work further problems and operators will be
investigated. Other work can be combinations of edge types
as well as doing inference of the outcome of the random
variables from the generated graphical models. Moreover, if
we correlate fitness with the graphical model we can:

• Pool all samples and take top fitness slice and learn a
graphical model.

• Use fitness value as a conditional value for the graph-
ical model.

• Align the data based on fitness to get the dependency
structure of populations with similar fitness distribu-
tion
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APPENDIX
A. FAST LEARNING OF THE MODEL

We use an evolutionary algorithm for learning the struc-
ture of a Bayesian network from a fully observed data set.
This algorithm searches over the space of node orders, rather
than searching over the space of DAGs. The genetic algo-
rithm proposes an order and an optimal DAG is identified
by exhaustively searching through different possible DAGs
given this order. Each DAG is scored using a Bayesian score
function.

A.1 Representation and Operators
In our GA over orders, we use the node order R as the

genotype of an individual. We use swap mutation and cycle
crossover as our operators (3). There are many networks
consistent with the order R. We define the phenotype of an
individual as the best network consistent with R, subject to
a maximum indegree k, which is fixed at the start of the
algorithm. This follows the setup that Teyssier and Koller
(20) used for their hill-climbing algorithm over orders. The
GA needs to find the best DAG for R and k.

A.1.1 The Bayesian Score
We want our scoring function to measure how well a struc-

ture fits the data. We also want it to penalize complex
structures, because a simpler model makes inference more

tractable. The Bayesian score is one of several scoring func-
tions satisfying these criteria. We define a prior P (G) over
graph structures, and another prior P (θG | G) over parame-
ters given a graph. The posterior over structures for a data
set D is given by Bayes’ rule:

P (G | D) =
P (D | G) P (G)

P (D)

where the denominator is a normalizing factor that does not
depend on the structure we are trying to evaluate. The
Bayesian score is then given by:

scoreB(G : D) = log P (D | G) + log P (G). (1)

The second term is usually less important, because it does
not grow with the size of D. The first term is the logarithm
of the marginal likelihood of the data given the structure,
which averages over the choices of parameters for G:

P (D | G) =

Z
θG

P (D | θG ,G) P (θG | G) dθG ,

where P (D | θG ,G) is the likelihood of the data set given the
network 〈G, θ〉, and P (θG | G) is our prior over parameters
given a structure. The marginal likelihood is also known as
the evidence function.

If the prior over parameters is a Dirichlet distribution
where P (θYi|paYi

| G) has hyperparameters {αG
y

j
i |ui

} for j

from 1 to |Yi|, which satisfies global and local parameter
independence. With αG

Yi|ui
=
P

j αG
y

j
i |ui

, then the marginal

likelihood can be written as follows:

P (D | G) =

Y
i

Y
ui∈Val(PaG

Yi
)

24 Γ(αG
Yi|ui

)

Γ(αG
Yi|ui

+ M [ui])
·

·
Y

y
j
i∈Val(Yi)

Γ(αG
y

j
i |ui

+ M [yj
i ,ui])

Γ(αG
y

j
i |ui

)

375
(2)

This formula is simplified by choosing a reasonable prior.
Priors and Decomposability

It is desirable to have a scoring function that decomposes:

score(G : D) =
X

i

FamScore(Yi | PaGi : D)

where the family score FamScore(Yi | U : D) measures
how well the variables U serve as parents of Y . With a
decomposable score, local changes to the structure affect
only a small number of families, and so we do not have to
recompute the score of the entire network. For example, if
we change the order such that we only swap the last two
positions in a node ordering R we only have to search for
the best parent sets for the last two nodes and only evaluate
the family scores for these two nodes. Additionally, we can
search for best parent sets of individual nodes independently.

To ensure that the Bayesian score decomposes, our struc-
ture and parameter priors should satisfy some conditions.
The structure prior should satisfy structure modularity:

P (G) ∝
Y

i

P (PaYi = PaGYi
),

where P (PaYi = PaGYi
) is the probability of choosing that

specific set of parents for Xi. The parameter prior should
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satisfy global parameter independence and parameter mod-
ularity:

P (θYi|U | G) = P (θYi|U | G′)
for any pair of structures G, G′.

When we have no prior knowledge about the structure we
are trying to learn, we can use a structure prior that assigns
equal probability to every possible structure. In this case,
we can ignore the second term (logP (G)) in the Bayesian
score (equation 1), and evaluate structures solely by their
marginal log-likelihood log P (D | G).

In the case when we have no prior knowledge about the
parameters, we can use the BDeu prior. (BDeu stands for
uniform Bayesian Dirichlet prior satisfying likelihood equiv-
alence (11).) For this prior, we only need to specify an
equivalent sample size (or strength) α. Given a node Yi and
its parents PaYi , the BDeu prior assigns equal probabilities
to all values of the node and parents:

αyi|paYi
= α · 1

|Val(Yi, PaYi)|
, (3)

where |Val(Yi, PaYi)| is the number of possible assignments
to Xi and PaYi . Let γ(Y) = α · 1

|V al(Y)| for any set of nodes

Y. Then the marginal log-likelihood score decomposes into
a sum of terms for each family:

FamScore(Yi, PaYi) =
X

ui∈Val(PaG
Yi

)

"
(4)

X
y

j
i∈Val(yi)

ln
Γ(γ(Yi, PaYi) + M [yj

i ,ui])

Γ(γ(Yi, PaYi))

ln
Γ(γ(PaGYi

))

Γ(γ(PaGYi
)) + M [ui])

+

X
y

j
i∈Val(yi)

ln
Γ(γ(Yi, PaYi) + M [yj

i ,ui])

Γ(γ(Yi, PaYi))

#

A.2 Caching for Efficient Fitness Evaluation
Evaluating the fitness of an individual in our GA involves

computing the Bayesian score of a network, which is an ex-
pensive operation. We use two levels of caching to speed up
this computation. The first level caches sufficient statistics
(counts) of the data set. The second level caches set scores.

Suppose that we had a contingency table for a node Yi and
its parents PaYi . This table contains one row for each possi-
ble assignment to Yi and PaYi , and the number of times that
assignment occurs in the training set. If we have this con-
tingency table, then we can evaluate FamScore(Yi, PaYi) in
time linear to the size of the contingency table, simply by
performing the summation in Equation (4). We can com-
pute contingency tables naively as follows:

• We start with a table with all zeros.

• From each row in the data set, we extract the values of
Yi and PaYi , and denote them yi and ui respectively.

• We then increment the row corresponding to yi,ui in
the contingency table.

With this approach, computing each contingency table re-
quires one pass over the entire data set.

data set +
AD-tree parameters

AD-tree

set of
variables

contingency
table

query result

build

Figure 11: An AD-tree is built once and queried
many times.

Our first level of caching uses the AD-tree data struc-
ture of Moore and Lee (14) to speed up the computation
of contingency tables. The AD-tree saves time at the ex-
pense of using more memory. It is a tree data structure,
where each node “splits” the data set according to all pos-
sible assignments to a variable. Contingency tables can be
computed from the AD-tree in time that is independent of
the total size of the data set. Thus, we no longer require
one full pass through the data set to compute a contingency
table. Figure 11 illustrates the usage of the AD-tree. For
details see Moore and Lee (14).

Traditional hill-climbing methods cache family scores so
that they can be retrieved again and again without being re-
computed. We improve on this slightly by noticing that with
the BDeu prior, the family score (equation (4)) decomposes
into two set scores:

FamScore(Yi, PaYi) = SetScore(PaYi∪{Yi})− SetScore(PaYi)

where

SetScore(Y) =
X

vi∈Val(Y)

ln
Γ(αY)

Γ(αY + M [vi])

for any set of variables Y, and αY = α· 1
|Val(Y)| . Computing a

family score seems to require the contingency tables of PaYi∪
{Yi} and PaYi . But in fact, the latter contingency table can
be obtained from the former by marginalizing the column
Yi. This means that only one AD-tree query is required for
computing the score of a family.

Our second level of caching stores set scores instead
of family scores. This results in more cache hits, because
multiple families during the lifetime of the algorithm may
have the same set of parents.

Additional improvements We cache sufficient statistics
and set scores, as we did for our GA over graphs (section
A.2). Note that we no longer need to build the full AD-tree.
If the maximum indegree is k, we will never need contingency
tables for more than k+1 variables, so we only need to build
the AD-tree up to depth k + 1.

From Teyssier and Koller (20) we use the following. Sup-
pose our maximum indegree is k. For each node X, we
compute the score of all possible parent sets of size k or
less. We rank these parent sets in decreasing order by score.
We then prune the set of possible parent sets as follows: if
U′ ⊂ U and FamScore(X | U′) > FamScore(X | U), then
we remove the parent set U from consideration. For any
order R, if U is a valid choice of parents for X, then U′ is
also valid, and has a better score. Therefore, we can safely
eliminate U, because we would never prefer it over U′. We
say that U is dominated by U′.

To evaluate an order R, we go through every node from
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first to last. For node X, we go through the ranked list
of its possible parent sets, stopping at the first parent set
consistent with the order R. This is the optimal parent set
for X, subject to the order R and the indegree constraint.
We continue until we have found the optimal parent set for
each node. At this point, as we previously discussed, we
have found the optimal network for the order R and the
given maximum indegree.
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