
Flash: A GP-GPU Ensemble Learning System

for Handling Large Datasets

Ignacio Arnaldo, Kalyan Veeramachaneni, and Una-May O’Reilly

MIT, Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
iarnaldo@mit.edu, {kalyan,unamay}@csail.mit.edu

Abstract. The Flash system runs ensemble-based Genetic Program-
ming (GP) symbolic regression on a shared memory desktop. To sig-
nificantly reduce the high time cost of the extensive model predictions
required by symbolic regression, its fitness evaluations are tasked to the
desktop’s GPU. Successive GP “instances” are run on different data sub-
sets and randomly chosen objective functions. Best models are collected
after a fixed number of generations and then fused with an adaptive,
output-space method. New instance launches are halted once learning
is complete. We demonstrate that Flash’s ensemble strategy not only
makes GP more robust, but it also provides an informed online means of
halting the learning process. Flash enables GP to learn from a dataset
composed of 370K exemplars and 90 features, evolving a population of
1000 individuals over 100 generations in as few as 50 seconds.

Keywords: Genetic Programming, GPGPU computing, Ensembles.

1 Introduction

The fitness evaluation component of Genetic Programming (GP) symbolic re-
gression (GPSR) dominates its cost because, at every generation, each model has
to be evaluated on multiple fitness cases, i.e. the dataset. If the dataset does not
saturate the memory of a single node, it can be replicated across nodes and the
algorithm can be parallelized by splitting the population across them as islands
with migration. On each node/island, “local” fitness evaluation is parallelized
via multi-threading. If the dataset size exceeds single node memory capacity,
data-level parallel approaches evolve models locally on each node with a subset
of the data, then a meta model is built that fuses outputs from several of these
models. Such ensemble strategies provide robustness to the learning process [8].
The population-parallel and data-parallel approaches are ideal if one has access
to a cloud or cluster [18]. However some scenarios may prevent their adoption:

– Privacy and security policies around data may require that the machine learn-
ing and data mining be carried out locally.

– Large data transfers may be prohibitively expensive or require too extensive
a prior setup.

– A scientist may wish to use GPSR as an exploratory tool, tightly integrated
into a desktop workflow that requires timely delivery of models.

M. Nicolau et al. (Eds.): EuroGP 2014, LNCS 8599, pp. 13–24, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

14 I. Arnaldo, K. Veeramachaneni, and U.-M. O’Reilly

Flash serves this class of scenarios wherein desktop computing is necessary or
desired but the dataset is larger than the desktop’s memory capacity. It is a serial,
desktop alternative to a cloud-based GPSR ensemble system. Rather than node-
based learning in parallel on different subsets of data and different parameter
sets, the Flash GP learner is invoked sequentially; each time with a different
subset of data and a different set of parameters. Because it exploits General
Purpose GPUs to reduce the time cost of model evaluation, it is able to replicate
GPSR ensemble functionality within a single desktop and still obtain reduced
learning times, despite datasets sizes that are larger than the desktop’s memory
capacity. Flash comprises:

– GPU-optimized GPSR: Flash exploits different fitness functions that are
well suited to run on the GPU. In particular, it uses the correlation between
target values and predictions to drive GPSR. Diverse models are combined
with the algorithm Adaptive Regression by Mixing [20].

– Incremental Learning: Flash, as opposed to cloud-based GPSR ensembles
in which all the GP instances are run in a single batch of a preset size, decides
after each run whether to run an additional instance or to stop learning.

– High speed GPSR with large datasets: Flash implements fitness evalu-
ation in CUDA for execution in a low-cost gaming card, namely a NVIDIA
Geforce GTX 690. The card has two GPUs and allows concurrent kernel ex-
ecutions. Our implementation enables GP to learn from a dataset composed
of 370K exemplars and 90 features, evolving a population of 1000 individuals
during 100 generations in as less as 50 seconds.

We proceed as follows: Section 2 reviews existing GPU implementations of GP
algorithms. Section 3 presents the GPU specialized fitness functions. Section 4
describes Flash’s ensemble approach. Section 5 describes the experimental setup
while Section 6 presents the results. Section 7 concludes.

2 Related Work: Accelerating GP with GPUs

The capability of GPUs to speed up Genetic Programming has not escaped
the attention of researchers. Table 1 summarizes the experimental conditions
of significant contributions. In a nutshell, there are two recurrent approaches:
compiling the population at each generation and executing the resulting program
or creating an optimized interpreter of GP individuals.

Population Compilation This approach has its roots in GP scenarios targeting
the automatic generation of executable programs where the compilation step
verifies the feasibility of candidate solutions. However it can be applied to GP
problems in general for execution speed. Compiled expressions are expected to
execute faster since compiled code is optimized (code reordering, removal of
useless or redundant operations). This advantage must be balanced with the
overhead of compilation however.

Interpretation An interpreter that is capable of evaluating the GP “language”
of a given GP problem is implemented in the GPU. This approach waives com-
pilation and its overhead. It exploits evaluation parallelism at the individual

Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets 15

Table 1. Experiment conditions of closely related work and reported speedup

Contribution Pop. size Test Cases Approach Speedup As compared to
Harding-2007 [5] 100 65536 Pop. compilation 7351.06 Tree traversal
Chitty-2007 [3] 40000 Pop. compilation 29.98 CPU equivalent
Langdon-2008[9] 204800 1200 Interpreter 12.00 CPU equivalent
Banzhaf-2008 [1] 494021 Pop. compilation 7.40 CPU equivalent
Robilliard-2008 [16] 12500 2048 Interpreter 80.00 CPU equivalent
Wilson-2008 [19] 4000 251 Interpreter 2.51 Xbox CPU
Harding-2009 [7] 2048 10023300 Pop. compilation 55.00 Single GPU
Langdon-2009 [10] 262144 8192 Interpreter 34.00 CPU equivalent
Robilliard-2009 [17] 12500 100000 Interpreter 111.40 CPU equivalent
Lewis-2009 [12] 400 512 Interpreter 1259.57 CPU equivalent
Maitre-2010 [14] 1200 Interpreter 50.00 CPU equivalent
Langdon-2010 [11] 262144 8192 Interpreter - Never done in CPU
Maitre-2010b [13] 65536 65536 Interpreter 140.00 CPU equivalent
Harding-2011[6] 2000000 Interpreter - Never done in CPU

and fitness case level and suits GP scenarios with a small number of test cases.
Because threads in charge of evaluating short expressions will be idle waiting for
longer expressions to finish their execution, some resources are wasted.

Preliminary Analysis We compare the speedup obtained with the compilation
and interpretation approaches against a standard tree traversal evaluation. We
generate 5 random datasets composed of and 5,10,20,50, and 100 explanatory
variables respectively and a million exemplars. For each of the five resulting
datasets, we generate a population of 1000 individuals with a ramped half-and-
half strategy. The time per population evaluation of these two approaches is
shown in Figure 1. The comparative analysis shows that the interpreter approach
obtains faster evaluations. As shown in Table 1b, the compilation time severely
impacts the speedup obtained with the compilation approach. Therefore, we
adopt the interpreter approach in our work.

(a) Interpreter vs. Population Compilation

Step % runtime

traversals 0.48%
code 0.30%
compile 86.90%
run 12.32%

(b) Population compila-
tion profiling

Fig. 1. Speedup obtained with the CUDA interpreter (80×) and compiling (14×) ap-
proaches with different data dimensionality and size as compared to a standard CPU-
based evaluation, and profiling of the compilation approach

16 I. Arnaldo, K. Veeramachaneni, and U.-M. O’Reilly

3 The Core GP Learner

We now present the core GP learner that uses the GPU. Most of the steps in
the GP learning algorithm, like other approaches are carried out in the CPU.
Fitness function evaluation, which is biggest bottleneck and scales with the data
size is carried out on a GPU. To support ensemble learning we developed a
library of interpreter approach based fitness evaluation functions. We then allow
the flexibility to a choose a fitness function by the ensemble learning system. We
illustrate how we implement two fitness functions on GPU: Mean Squared Error
and Pearson Correlation coefficient between model output and target values
computed as follows:

MSE =
1

n

n∑

i=1

(Ŷi − Yi)
2 r =

∑n
i=1(Ŷi − Ŷ)(Yi − Y)√∑n

i=1(Ŷi − Ŷ)2
√∑n

i=1(Yi − Y)2

where Y is the target vector and Ŷ is the model output or predictions. These
two functions are embedded in a multi-objective GP based on NSGA-II targeting
both accuracy and Subtree Complexity. The fixed structure of NSGA-II allows to
evaluate the population in fixed-sized batches, which is useful for GPU execution.

3.1 Mean Squared Error and Pearson Correlation on GPUs

The computation required to score a model is broken in several steps. Note that,
in Genetic Programming-based Symbolic Regression, it is typical to set the tar-
get and prediction values in the same range (see Step 0 and Step 3) prior to the
computation of the error. This approach is meant to focus the search process to
capture the shape of the curve rather than its scale.

Step 0: Normalization of the target values In this step, performed before
the start of the GP algorithm, the target vector Y is normalized according to
the minimum (Ymin) and maximum (Ymax) values.

Step 1: Evaluation of non linear model with GPUs In this step, non-
linear model f(X̄) is evaluated for the n data points in DT resulting in y1...n.
We implement a GPU interpreter capable of evaluating any possible arithmetic
expression in postfix notation [9] [16] [19]. As depicted in Figure 2, several steps
are required to obtain the postfix expression from a GP tree. We first traverse the
tree in a depth-first in-order manner to generate the respective infix expression.
We then apply Dijkstra’s Shunting Yard algorithm [4] to obtain the postfix
notation. The interpreter will evaluate the expression and produce an output
value for each data point in the dataset. This task is computed via GPUs for
datasets of size hundreds of thousands or even millions of independent test cases.
In our GPU implementation, a CUDA thread is declared for each data point in
the dataset. Thus multiple CUDA threads will execute the interpreter function
shown in Figure 2 simultaneously on different data points, ensuring that all
threads follow the exact same execution path. Note that conditional instructions
such as if or while statements are pernicious for the performance of CUDA

Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets 17

function CUDAInt(Epostfix)

loadVariablesX(threadId)
while not end of expression do

read token from expression
if token is a variable then

push
else if token is operator then

pop right operand
if unary operator then

evaluate(right)
else if binary operator then

pop left operand
evaluate(left,right)

end if
push result

end if
end while
pop result
output[threadId] = result

end function

Fig. 2. GP Tree and corresponding infix, and postfix expressions (left) and pseudocode
of the postfix interpreter (right)

programs only when they trigger a divergence in the execution of threads within
a warp (see [15]). In such case, their execution is serialized. To benefit from
coalesced memory accesses, we transpose the input matrix before storing it in
global memory in such way that exemplars are displayed in columns while each
line corresponds to an explanatory variable. This way, contiguous threads will
access adjacent memory positions, thus reducing the number of expensive global
memory accesses. At the end of this step we obtain the output of the model
Ŷ1...n for all the n data points in DT .

Step 2: retrieval of Ŷmin and Ŷmax A CUDA parallel reduction is employed to
retrieve the maximum and minimum values of the model’s output.

Step 3: normalization of the predictions Ŷ We normalize the model’s out-
put according to minimum (Ŷmin) and maximum (Ŷmax) predictions.

The remaining steps are different for the computation of the Mean Squared Er-
ror (MSE) and the Pearson correlation coefficient (CORR):

MSE-Step 4: With both the target and prediction values in the same range,
we compute the sum of the squared differences

∑n
1 (Ŷ−Y)2 with a CUDA parallel

reduction sum.
MSE-Step 5: The result of the sum is averaged over the number of exemplars
of the dataset in CPU and assigned as fitness of the individual.

CORR-Step 4: We employ a CUDA parallel reduction sum to compute the
mean of targets Y as well as the mean of the predictions Ŷ

CORR-Step 5: Once again a CUDA parallel reduction sum is employed to com-

pute the denominator
∑n

i=1(Ŷi−Ŷ)(Yi−Y) and the numerator terms
√

∑
n
i=1(Ŷi−Ŷ)2

and
√∑n

i=1(Yi−Y)2

18 I. Arnaldo, K. Veeramachaneni, and U.-M. O’Reilly

CORR-Step 6: The Pearson correlation coefficient is computed in CPU and
assigned as fitness of the individual.

3.2 Individual Level Parallelism

Modern CUDA compatible GPUs provide concurrent kernel execution, i.e. it is
possible to execute several GPU functions at the same time. This allows us to
parallelize GP at the individual level in a clean and easy way. Moreover, GPUs
composed of two independent GPUs such as the employed NVIDIA GeForce
GTX 690 are more and more frequent, granting further degrees of parallelism.
As depicted in Figure 3a, the population is split into 4 different subsets. A CPU
thread is declared for each subpopulation that calls the GPU evaluation function
sequentially for each individual of the subset. The two first threads will employ
the first GPU while the third and fourth threads employ the second GPU. The
memory space of each of the two GPUs is independent, therefore data is copied
to the Global Memory of both GPUs.

4 Flash - The GP-GPU Ensemble Learning System

Having designed a flexible core GP-GPU learner, we adopt an ensemble strategy
in which several GP instances are run sequentially with different data subsets
and parameters (such as fitness functions). In a step prior to the machine learn-
ing process, the targeted data D is split into training set DT , cross-validation set
DCV , and test set DTEST . GP instances learn from DT while DCV is employed
to train the fused model. Finally, DTEST is reserved to test the accuracy of the
retrieved models. Figure 3b presents the Flash-GP approach: a subset of data
is randomly selected and the objective function for the GP algorithm is picked
randomly. The core GP learner is then executed with these parameters. After a
fixed number of generations the best model is selected. The fusion module gen-
erates the fused model by training the weights within the “Adaptive Regression
by Mixing” methodology using DCV . A decision is made whether to continue
the learning or not and the loop is repeated.

4.1 GP Instances

Factorization. As depicted in Figure 3b, each GP instance learns from a sub-
sample of the exemplars and explanatory variables of DT .
Exemplars: Each GP instance samples from the test cases of the training data
DT which will speed up model fitness evaluation and result in diverse model
results across the sequential GP instances.
Explanatory Variables: Sampling from different explanatory variables reduces
the dimensionality of the targeted dataset. On the other hand, the evolved mod-
els might exhibit low accuracy if the sampled variables can’t sufficiently relate
to the target values Y .

Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets 19

(a) Individual-level parallelism

(b) Ensemble loop

Fig. 3. The evaluation is parallelized at the individual level by exploiting concurrent
kernel executions in two GPUs. Flash-GP: GP instances learn from different samples
of the data and the retrieved models are fused in a later step.

Best Model per GP Instance. GP instances learn from the sampled data and
are executed with a time or computational budget. At each generation, we store
the model exhibiting the highest fitness value (MSE or correlation) with respect
to DT . The motivation to save the best model per generation is that models from
advanced generations might overfit the data while some of the models obtained
earlier might exhibit better generalization capability, i.e. a better accuracy with
respect to unseen data. Once the GP run is finished, the stored models (best
per generation) are evaluated against DCV to obtain their MSE. The model
exhibiting the lowest error with respect to the validation set is then selected as
the best model of the run and will be used in the fusion process.

4.2 Generating a Fused Model

We employ the algorithm Adaptive Regression by Mixing (ARM) [20] that allows
to fuse a set of models M according to an estimation of their accuracy. The fused
model z obtained with ARM is a linear combination of the modelsm ∈ M . Given
a test sample Xj, the prediction ẑj issued by the fused model is the weighted
average of model predictions ẑj=

∑o
m=1 WmŶmj. Thus, the fusion process consists

of learning the weight Wm for each model. Let r = |DCV | be the size of the
fusion training set, and o = |M| be the number of models in the ensemble. Here,
we assume that the errors for each model are normally distributed. We use the
variance in these errors to identify the weights by executing the following steps:

Step 1: Split DCV randomly into two equally sized subsets D
(1)
CV and D

(2)
CV .

Step 2: Evaluate σ2
m which is the maximum likelihood estimate of the variance

of the errors, em={Ŷmj−Yj |Xj ,Yj∈D
(1)
CV }. Compute the sum of squared errors on

D(2), βm=
∑r

j= r
2
+1(Ŷmj−Yj)

2.

Step 3: Estimate the weights using: Wm =
(σm)−r/2exp(−σ−2

m βm/2)
∑o

j=1(σj)−r/2exp(−σ−2
j βj/2)

Step 4: Repeat steps 1-3 for a fixed number of times. Average the weights from
each iteration to get the final weights for the models.

20 I. Arnaldo, K. Veeramachaneni, and U.-M. O’Reilly

5 Experimental Setup

5.1 Million Song Dataset Year Prediction Challenge

The proposed approach is demonstrated with the Million Song Dataset (MSD)
year prediction challenge [2], a regression problem in which the goal is to predict
the year in which a given song was released. The dataset has 515K songs, each
described with 90 features and a year label. The dataset is divided into DT ,
DCV , and DTEST accounting for 70%, 10%, and 20% of the data respectively
(see Table 2). In addition, we generate 20 subsets Df1

T ...Df20
T by sampling half

the exemplars from the training set DT . Note that the producer effect issue [2]
has been taken into account to perform all the splits.

5.2 Ensemble Configurations

We set up different configurations of Flash by selecting different objective func-
tions and choosing whether or not to factor the data. We select from three
objective combinations:
1. MSE: Mean Squared Error + Subtree Complexity
2. CORR: Pearson correlation coefficient + Subtree Complexity
3. MSE-CORR: MSE + Pearson correlation coefficient + Subtree Complexity
All the studied configurations are multi-objective and all use the Subtree

Complexity measure to prevent bloating issues. We compare two data strategies:
1. The complete training set DTR is considered in each of the GP instances of

the ensemble
2. Data factoring: each GP instance of the ensemble randomly selects a set

Dfi
TR, where i ∈ [1; 20]. Additionally, each instance randomly selects v ex-

planatory variables of Dfi
TR, where v ∈ {5, 10, 20, 40, 60, 80, 90}. The f (as

in factoring) suffix is appended to the name of the configuration when this
data strategy is adopted.

The 6 resulting configurations: MSE, MSEf , CORR, CORRf , MSE-CORR, and
MSE-CORRf are summarized in Table 3. The following settings are fixed in all
the experiments. Each GP instance is run for 100 generations with a population
of 1000 individuals. A time budget of an hour is imposed on the GP ensembles.
Finally, the number of iterations of the ARM fusion process is set to 100. We
perform 20 replicas of each of the ensemble configurations. Thus, in summary,
we perform a total of: 6(configurations)×20(replicas)=120 ensemble runs. All
the experiments are run on the same computer, equipped with an Intel Core-
i7-3930K composed of 6 cores with hyper-threading running at 3.20GHz and a
NVIDIA Geforce GTX 690 that counts two GPUs, each with 1536 CUDA cores.
The GPU postifx interpreter (see Figure 2) is compiled with the fast-math flag.

6 Results

6.1 Prediction Error Analysis

A key question is whether the objective function designed to suit GPU usage
and a strategy of learning with less data compromises quality. Our first merit of

Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets 21

Table 2. MSD splits

D DT Dfi
T DCV DTEST

100% 70% 35% 10% 20%
515K 362K 181K 51K 102K

Table 3. Configuration of the compared ensembles

Configuration Fitness Functions Factor Data
MSE MSE, Subtree Comp no
MSEf MSE, Subtree Comp yes
CORR P. Corr, Subtree Comp no
CORRf P. Corr, Subtree Comp yes

MSE-CORR MSE, P. Corr, Subtree Comp no
MSE-CORRf MSE, P. Corr, Subtree Comp yes

quality will be prediction error with respect to Mean Squared Error of the unseen
data DTEST . Figure 4a shows the boxplots generated with the MSETEST errors
corresponding to the 20 replicas of the runs. First, we observe that, independent
of the objective functions, the data factoring strategy leads to a better accuracy.
Second, we observe that the maximization of the Pearson correlation coefficient
outperforms the standard MSE approach.

To statistically validate these observations, we perform a pairwise Anova test
and multiple testing using the Tukey-Kramer or also known as Tukey’s honestly
significant difference (HSD) method for the prediction errors MSETEST of the
different ensemble configurations. The results are shown in Table 4 where each
row presents a test result and the two entries [xl, xu] represent the 95% confidence
interval between true differences of the mean. Any time the confidence interval
does not enclose 0 the difference is significant at α = 0.05. The table verifies that
factoring is a statistically superior configuration, regardless of objective function:
MSEf , CORRf , and MSE-CORRf respectively outperform MSE, CORR, and
MSE-CORR. The superior prediction accuracy of CORRf versus the remaining
approaches is statistically significant.

6.2 Prediction Error vs. GP Instances

We study the impact of the number of GP instances forming the ensemble in
the accuracy of the fused model. In Figure 5, we plot the average and stan-
dard deviation of the MSETEST of the fused model when the number of GP
instances increases. In all the studied cases, the prediction error of the fused
model decreases when a higher number of GP runs are performed. However,
a high variability can be observed in the cases where the factoring strategy is
employed. It is due to the fact that a fraction of the GP instances learn from a

MSE MSEf CORR CORRf MSE−CORR MSE−CORRf

90

95

100

105

110

M
S

E
 T

E
S

T

(a) Test MSE

MSE MSEf CORR CORRf MSE−CORR MSE−CORRf
50

100

150

200

250

300

350

400

T
IM

E
 P

E
R

 G
P

 R
U

N
 (

s)

(b) Time per GP run in seconds

Fig. 4. Accuracy (a) and time per GP run in seconds (b) of the 6 ensemble configurations

22 I. Arnaldo, K. Veeramachaneni, and U.-M. O’Reilly

Table 4. Pairwise MSE comparison with ANOVA test

MSE MSEf CORR CORRf MSE-CORR

MSE -
MSEf [1.08;6.26] -
CORR [6.02;11.20] [2.35;7.53] -
CORRf [9.72;14.90] [6.05;11.23] [1.11;6.29] -
MSE-CORR [2.59;7.77] [-1.08;4.10] [-6.02;-0.84] [-9.72;-4.54] -
MSE-CORRf [6.98;12.16] [3.31;8.49] [-1.64;3.55] [-5.34;-0.16] [1.80;6.98]

Fig. 5. Average MSE of the fused model with an increasing number of GP instances
for the 6 different ensemble configurations

reduced set of non representative variables and achieve poor predictions. How-
ever, as more GP instances are considered, the average accuracy increases and
the variability decreases. Therefore, ensemble approaches adopting the data fac-
toring strategy need to consider a larger number of GP instances to minimize
the variability in the prediction accuracy.

6.3 Runtime Analysis

We analyze whether the data factoring strategies lead to shorter runtimes. The
time per GP instance of the compared approaches is shown in Figure 4b. It
can be seen that the time necessary to evolve 1000 GP individuals during 100
generation varies from 50 seconds to approximately 400 seconds. To compare
the different runtimes, we perform a pairwise Anova test and multiple testing
using the Tukey-Kramer or also known as Tukey’s honestly significant difference
(HSD) method for the time per GP instance retrieved from the 20 replicas of
the ensemble runs. The analysis presented in Table 5 shows that MSEf and
MSE-CORRf are respectively faster than MSE and MSE-CORR. However, the
runtime of the CORR and CORRf approaches is not statistically different.

Flash: A GP-GPU Ensemble Learning System for Handling Large Datasets 23

Table 5. Pairwise time per GP instance comparison with ANOVA test

MSE MSEf CORR CORRf MSE-CORR
MSE -
MSEf [6.77;22.33] -
CORR [-23.98;-7.57] [-38.33;-22.33] -
CORRf [-28.61;-12.04] [-42.95;-26.79] [-13.04;3.95] -
MSE-CORR [-157.74;-138.17] [-172.11;-152.89] [-142.14;-122.22] [-137.65;-117.61] -
MSE-CORRf [-126.21;-107.09] [-140.58;-121.82] [-110.61;-91.14] [-106.13;-86.52] [20.20;42.40]

7 Conclusions and Future Work

We have presented a GPU-based implementation of a GP ensemble strategy
where different GP instances are run sequentially on a single desktop, and the
models retrieved from the different runs are fused with Adaptive Regression by
Mixing. Our approach is demonstrated with the Million Song Dataset year pre-
diction challenge, a symbolic regression problem that has 515K exemplars. The
execution of the evaluation step in a dual-GPU with concurrent kernels allows
GP instances with 1000 individuals to run for 100 generations in as few as 50
seconds. The experimental work shows that the implementation of a data reduc-
tion strategy in which each GP instance of the ensemble samples a subset of the
exemplars and explanatory variables of the data outperforms the standard strat-
egy that considers the whole dataset. It also shows that employing the Pearson
correlation coefficient between predictions and targets to drive the search leads
to a higher accuracy than the generally used Mean Squared Error metric.

Acknowledgments. The ALFA group gratefully recognizes the financial sup-
port of the Li Ka Shing Foundation and the G.E. Global Research Center. Any
opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of G.E.

References

1. Banzhaf, W., Harding, S., Langdon, W., Wilson, G.: Accelerating genetic pro-
gramming through graphics processing units. In: Genetic Programming Theory
and Practice VI. Genetic and Evolutionary Computation, pp. 1–19. Springer US
(2009)

2. Bertin-Mahieux, T., Ellis, D.P., Whitman, B., Lamere, P.: The million song dataset.
In: Proceedings of the 12th International Conference on Music Information Re-
trieval, ISMIR 2011 (2011)

3. Chitty, D.M.: A data parallel approach to genetic programming using pro-
grammable graphics hardware. In: Proceedings of the 9th Annual GECCO Con-
ference, GECCO 2007, pp. 1566–1573. ACM, New York (2007)

4. Dijkstra, E.W.: Algol 60 translation. Supplement, Algol 60 Bulletin 10 (1960)

5. Harding, S., Banzhaf, W.: Fast genetic programming on GPUs. In: Ebner, M.,
O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007.
LNCS, vol. 4445, pp. 90–101. Springer, Heidelberg (2007)

24 I. Arnaldo, K. Veeramachaneni, and U.-M. O’Reilly

6. Harding, S., Banzhaf, W.: Implementing cartesian genetic programming classifiers
on graphics processing units using GPU.NET. In: Proceedings of the 13th GECCO
Conference, GECCO 2011, pp. 463–470. ACM, New York (2011)

7. Harding, S.L., Banzhaf, W.: Distributed genetic programming on GPUs using
CUDA. In: Hidalgo, I., Fernandez, F., Lanchares, J. (eds.) PABA Workshop,
Raleigh, NC, USA, September 13, pp. 1–10 (2009)

8. Kotanchek, M., Smits, G., Vladislavleva, E.: Trustable symbolic regression models:
using ensembles, interval arithmetic and pareto fronts to develop robust and trust-
aware models. In: Riolo, R., Soule, T., Worzel, B. (eds.) Genetic Programming
Theory and Practice V. Genetic and Evolutionary Computation Series, pp. 201–
220. Springer US (2008)

9. Langdon, W.B., Banzhaf, W.: A SIMD interpreter for genetic programming
on GPU graphics cards. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia
Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008.
LNCS, vol. 4971, pp. 73–85. Springer, Heidelberg (2008)

10. Langdon, W.: A CUDA SIMT interpreter for genetic programming. Tech. Rep.
TR-09-05, Department of Computer Science, Strand (June 2009) (revised)

11. Langdon, W.B.: A many threaded CUDA interpreter for genetic programming. In:
Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP
2010. LNCS, vol. 6021, pp. 146–158. Springer, Heidelberg (2010)

12. Lewis, T.E., Magoulas, G.D.: Strategies to minimise the total run time of cyclic
graph based genetic programming with GPUs. In: Proceedings of the 11th GECCO
Conference, GECCO 2009, pp. 1379–1386. ACM, New York (2009)

13. Maitre, O., Querry, S., Lachiche, N., Collet, P.: EASEA parallelization of tree-
based Genetic Programming. In: 2010 IEEE Congress on Evolutionary Computa-
tion (CEC), pp. 1–8 (2010)

14. Maitre, O., Lachiche, N., Collet, P.: Fast evaluation of GP trees on GPGPU
by optimizing hardware scheduling. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva,
S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 301–312.
Springer, Heidelberg (2010)

15. NVIDIA Corporation: NVIDIA CUDA C programming guide, version 3.2 (2010)
16. Robilliard, D., Marion-Poty, V., Fonlupt, C.: Population parallel GP on the G80

GPU. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De
Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971,
pp. 98–109. Springer, Heidelberg (2008)

17. Robilliard, D., Marion-Poty, V., Fonlupt, C.: Genetic programming on graphics
processing units. Genetic Programming and Evolvable Machines 10(4), 447–471
(2009)

18. Veeramachaneni, K., Derby, O., Sherry, D., O’Reilly, U.M.: Learning regression en-
sembles with genetic programming at scale. In: Proceeding of the Fifteenth GECCO
Conference, GECCO 2013, pp. 1117–1124. ACM, New York (2013)

19. Wilson, G., Banzhaf, W.: Linear genetic programming GPGPU on Microsoft Xbox
360. In: IEEE Congress on Evolutionary Computation, pp. 378–385 (2008)

20. Yang, Y.: Adaptive regression by mixing. Journal of the American Statistical As-
sociation 96(454), 574–588 (2001)

	Flash: A GP-GPU Ensemble Learning System
for Handling Large Datasets

	1 Introduction
	2 Related Work: Accelerating GP with GPUs
	3 The Core GP Learner
	3.1 Mean Squared Error and Pearson Correlation on GPUs
	3.2 Individual Level Parallelism

	4 Flash - The GP-GPU Ensemble Learning System
	4.1 GP Instances
	4.2 Generating a Fused Model

	5 Experimental Setup
	5.1 Million Song Dataset Year Prediction Challenge
	5.2 Ensemble Configurations

	6 Results
	6.1 Prediction Error Analysis
	6.2 Prediction Error vs. GP Instances
	6.3 Runtime Analysis

	7 Conclusions and Future Work
	References

